3.13 For a central force problem with a power law potential, the equation of the orbit is given by Eq. 3.33:

\[\frac{\ell}{r^2} \frac{d}{d\theta} \left(\frac{\ell}{mr^2} \frac{dr}{d\theta} \right) - \frac{\ell^2}{mr^2} = f(r) \]

where \(f(r) = -\frac{dv}{dr} = ar^n \)

a) We need to show that \(n = -5 \) for the following orbit:

From this figure, we can write down the following orbit equation:

\[r = 2a \cos \theta \]

\(\ell \) can be simplify by multiply \(r^2 \) through out the equation:

\[\ell \frac{d}{d\theta} \left(\frac{\ell}{mr^2} \frac{dr}{d\theta} \right) - \frac{\ell^2}{mr} = r^2 f(r) \]

\[\frac{\ell}{mr^2} \frac{dr}{d\theta} = \frac{\ell}{m4a^2 \cos^2 \theta} (-2a \sin \theta) = -\frac{\ell}{2am} \frac{\sin \theta}{\cos^3 \theta} \]

\[\ell \frac{d}{d\theta} \left(\frac{\ell}{mr^2} \frac{dr}{d\theta} \right) = -\frac{\ell^2}{2am} \frac{d}{d\theta} \left(\frac{\sin \theta}{\cos^3 \theta} \right) \]

\[= -\frac{\ell^2}{2am} \left(\frac{\cos \theta}{\cos^3 \theta} + \left(\frac{-2\sin \theta}{\cos^3 \theta} \right) (-\sin \theta) \right) \]
\[\ell^2 = -\frac{\ell^2}{2am} \left(\frac{1}{\cos \theta} + \frac{2 \sin^2 \theta}{\cos^3 \theta} \right) \]

\[-\frac{\ell^2}{2am} \left(\frac{1}{\cos \theta} + \frac{2 \sin^2 \theta}{\cos^3 \theta} \right) - \frac{\ell^2}{2am \cos \theta} = 4a^2 \cos \theta \ f(r) \]

\[-\frac{\ell^2}{2am} \left(\frac{\cos^2 \theta + 2 \sin \theta \cos \theta + \cos^2 \theta}{\cos^2 \theta} \right) = 4a^2 \cos \theta \ f(r) \]

\[f(r) = -\frac{\ell^2 a^2}{m} - \frac{8}{8 \cdot 4a^5 \cos^5 \theta} \]

\[f(r) = -\frac{8\ell^2 a^2}{mr^5} \]

So, the force law is an inverse fifth power, i.e., \(n = -5 \).

5). Show that the total energy of the particle is zero.

\[r = 2a \cos \theta \]
\[\dot{r} = -2a \sin \theta \dot{\theta} \]
\[T = \frac{1}{2} mr^2 + \frac{1}{2} mr^2 \dot{\theta}^2 \]
\[= \frac{1}{2} m \left(4a^2 \sin^2 \theta \dot{\theta}^2 + 4a^2 \cos^2 \theta \dot{\theta}^2 \right) \]
\[T = 2ma^2 \dot{\theta}^2 \]

- For a central force problem, the angular momentum is a conserved quantity. We can use it to rewrite the above expression:

\[l = mr^2 \dot{\theta}^2 \Rightarrow \ell^2 = m^2 r^4 \dot{\theta}^4 \]

So, \[T = 2ma^2 \left(\frac{\ell^2}{m^2 r^4} \right) \]

\[= \frac{2 \ell^2 a^2}{m r^4} \]

- \[f(r) = -\frac{8 \ell^2 a^2}{mr^5} \Rightarrow V(r) = -\int f(r) \, dr \]

\[= -\frac{2 \ell^2 a^2}{mr^4} \]

- Now, \[E = T + V \]

\[= \frac{2 \ell^2 a^2}{m r^4} - \frac{2 \ell^2 a^2}{m r^4} = 0 \]

c). Find the period of motion:

Going back to the orbit picture, the particle goes around one cycle when \(\theta \) goes from \(-\pi/2\) to \(\pi/2\).
\[T = \int_{0}^{\pi/2} dt = \int_{0}^{\pi/2} \frac{d\theta}{\sin \theta} \]

\[= \int_{-\pi/2}^{\pi/2} \frac{d\theta}{\sin \theta} = \int_{-\pi/2}^{\pi/2} \frac{mr^2}{l} \, d\theta \quad \text{(again, we use the relation)} \]

\[= \frac{4a^2m}{l} \int_{-\pi/2}^{\pi/2} \cos \theta \, d\theta = \int_{-\pi/2}^{\pi/2} \frac{1}{2} \left(1 + \frac{\cos \theta}{4 \sin^2 \theta} \right) \, d\theta \]

\[= \frac{4a^2m}{l} \left(\frac{\pi}{4} + \frac{1}{4} \sin 2\theta \right)_{-\pi/2}^{\pi/2} \]

\[= \frac{4a^2m}{l} \left(\frac{\pi}{4} + \frac{1}{4} (\sin \pi - \sin (-\pi)) \right) = \frac{2\pi ma^2}{l} \]

d). Choosing the force center as the origin of the \((x,y)\) cartesian coordinate system, we have:

\[x = r \cos \theta = 2a \cos^2 \theta \]

\[y = r \sin \theta = 2a \cos \theta \sin \theta \]

so that

\[\dot{x} = -4a \cos \theta \sin \theta \dot{\theta} = -2a \sin 2\theta \dot{\theta} \]

\[\dot{y} = -2a (\sin^2 \theta - \cos^3 \theta) \dot{\theta} = 2a \cos 2\theta \dot{\theta} \]

and

\[\dot{\nu}^2 = \dot{x}^2 + \dot{y}^2 = 4a^2 \dot{\theta}^2 \]

\[\nu = 2a \dot{\theta} \]
From the angular momentum equation, we have

\[l = m r^2 \dot{\theta} = ma^2 \cos^2 \theta \dot{\theta} \]

So,

\[\dot{x} = -2a \sin 2\theta \left(\frac{\dot{l}}{ma^2 \cos^2 \theta} \right) \]
\[= -\frac{2l}{ma} \frac{\sin 2\theta}{\cos^2 \theta} \]
\[\dot{y} = \frac{2l}{ma} \frac{\cos 2\theta}{\cos^2 \theta} \]
\[\dot{v} = \frac{2l}{ma} \frac{1}{\cos^2 \theta} \]

As \(\theta \to \pm \pi/2 \), \(\cos^2 \theta \to 0 \), so that it is obvious that both \(\dot{y} \) & \(\dot{v} \to \infty \).

For \(\dot{x} \), note that

\[\frac{\sin 2\theta}{\cos^2 \theta} = \frac{2 \sin \theta \cos \theta}{\cos^2 \theta} = \frac{2 \tan \theta}{\cos \theta} \to \infty \]

as \(\theta \to \pm \pi/2 \),

\[\Rightarrow \text{ so that all three quantities} \]
\[x, \dot{y}, v \to \infty \text{ as } \theta \to \pm \pi/2 \text{ (as the orbit goes thru the center of force)} \]

Note that this is a unique singular case when the orbit is passing thru its center of force.

Although \(x, \dot{y}, \theta, T, V \) all blow up as the orbit approaches its center of force, the two constants of motion \(E \) & \(L \) remain finite & constant.
\[V(r) = -\frac{k}{r} e^{-\frac{ra}{r}} \quad \text{(Yukawa potential)} \]

\(k > 0 \) and \(a > 0 \)

\[T = \frac{1}{2} m (\dot{r}^2 + r^2 \dot{\theta}^2) \]

\[L = T - V = \frac{1}{2} m (\dot{r}^2 + r^2 \dot{\theta}^2) + \frac{k}{r} e^{-\frac{ra}{r}} \]

\[\dot{r} - \frac{1}{r} \frac{dL}{dr} = 0 \implies m\ddot{r} - m r \dot{\theta}^2 - f(r) = 0 \quad (1) \]

where \(f(r) = -\frac{dV}{dr} = -\frac{k}{r^2} e^{-\frac{ra}{r}} - \frac{k}{ar} e^{-\frac{ra}{r}} \)

\[\dot{\theta} - \frac{dL}{d\theta} = 0 \implies \frac{d}{dt} (m r^2 \dot{\theta}) = 0 \]

\[\Rightarrow m r^2 \dot{\theta} = \ell \quad \text{(Angular momentum is conserved)} \]

Rewriting \((1) \) in terms of \(\ell \), we have

\[m \ddot{r} = \frac{\ell^2}{mr^2} + f(r) \]

If we let \(V'(r) = \frac{\ell^2}{2mr^2} + V(r) \) as an effective potential, then our equation of motion can be written as a one-dimensional problem:

\[m \ddot{r} = -\frac{d}{dr} V'(r) = -\frac{d}{dr} \left(\frac{\ell^2}{2mr^2} + V(r) \right) \]
Now, let us use the effective potential to discuss the qualitative nature of the orbits.

\[V'(r) = \frac{\ell^2}{2mr^2} - \frac{k}{r} e^{-r/a} \]

Consider the following cases:

1. \(\ell = 0 \) (no angular momentum):

\[V'(r) = -\frac{k}{r} e^{-r/a} \]

For \(E \geq 0 \), the motion is unbounded!

For \(E < 0 \), the motion is bounded by \(r < r^* \).

Also, since \(\ell = 0 \) (\(\theta = 0 \)), the particle will travel along a line straight toward the center of force.

2. \(\ell \neq 0 \):

\[V'(r) = \frac{\ell^2}{2mr^2} - \frac{k}{r} e^{-r/a} \]

Note: \(r \to 0, \)
\[\frac{\ell^2}{2mr^2} \to +\infty \]
\[-\frac{k}{r} e^{-r/a} \to -\infty \]

but \(\frac{\ell^2}{2mr^2} \) will dominate.

\(r \to \infty, \) \(e^{-r/a} \to 0 \) faster than \(\frac{1}{r^2} \) so that again \(\frac{\ell^2}{2mr^2} \) will dominate.
Putting these two observations together, we have

\[\frac{e^2}{4\pi \epsilon_0 r^2} \text{ dominates} \]

At \(r \to 0 \)

\[-\frac{k}{r} e^{-\frac{r}{a}} \text{ is important in the middle} \]

& shape of the dip will depend on the value of \(k \).

To examine how the shape of the dip is determined by \(k \),

let look at the extrema for \(V'(r) \):

Setting \(\frac{dv'}{dr} = 0 \) gives:

\[-\frac{e^2}{mr^2} + \frac{k}{r^2} e^{-\frac{r}{a}} + \frac{k}{ra} e^{-\frac{r}{a}} = 0 \]

\[ak^2 - mkr e^{-\frac{r}{a}} - mk^2 e^{-\frac{r}{a}} = 0 \]

\[\frac{ak^2}{mk} = (r^2 + ar) e^{-r/a} \]

\[\frac{e^2}{amk} = (x^2 + x)e^{-x} \quad \text{, where } x = \frac{r}{a} \]
Plotting \((x^2-x)e^{-x}\),

- we can see that

\[
\frac{e^2}{amk} < y^* = (x^* + x^*)e^{-x^*} \\
= (2 + \sqrt{2})e^{-\left(\frac{1+\sqrt{2}}{2}\right)} \\
\approx 0.84
\]

Then, there will be no solution to (2) and \(V(r)\) will not have any dips.

On the other hand, if \(\frac{e^2}{amk} < y^* \approx 0.84\), then \(V(r)\) will have two possible extrema \(\hat{r}_1 \& \hat{r}_2\) and the possibility for a dip (potential well) (see graphs above & below):

\[
\frac{e^2}{amk} < y^* \approx 0.84
\]
Note that it is possible for $V'(r)$ to be non-negative and still form a potential well.

This occurs when $V'(\hat{r}_1) \geq 0$.

For $0 < E$ (total energy) $< V'(\hat{r}_2)$, the particle will still be trapped in the potential.

Now, let consider a l value such that we will have a potential well, i.e. \(\frac{L^2}{\alpha m} < \mathcal{K} \). We want to consider the possible orbits for a given E.

The analysis will be very similar to the ones in the book.
1. For $E > E_2$, the orbit will be unbounded.

2. For $E < E_1$, there will be no solution.

3. For $E_1 < E < E_2$, the orbit will be stably bounded by the potential moving between two radii (r_{min} and r_{max}).

A particle from infinity will move toward the center of force and reaches its closest approach at r_{min} and it will then move back out to infinity.
Note: different from the inverse-square law or hook's law potentials, the orbit in this case will not close onto itself.

4. For $E = E_1$ or $E = E_2$, there will be the possibility for circular orbits but only the $E = E_1$ case will be a stable circular orbit.