1. [30] A line charge with uniform charge density lies along the z-axis between $z = 0$ and $z = b$ and has total charge Q.
 a) [10] Find an exact expression for the electrostatic potential $\Phi(r, z)$ in cylindrical coordinates.
 b) [5] Show that your result in part (a) has the correct asymptotic form as $\sqrt{r^2 + z^2} / b \to \infty$.
 c) [10] Find the potential $\Phi(r, \theta)$ in spherical coordinates (r, θ, ϕ) as a series involving Legendre polynomials and powers of r, for $r > b$.
 d) [5] Show that your results in parts (a) and (c) are equivalent for observation points on the z-axis with $z > b$. Recall the Taylor series
 \[
 \ln(1 - x) = -\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1} .
 \] (1)

2. [25] In this problem, you will find the electrostatic potential $\Phi(r, z)$ inside a circular cylinder with radius a and height L, adopting cylindrical coordinates (r, ϕ, z). The bottom of the cylinder is at $z = 0$ and the cylinder’s axis is the z-axis. The potential is zero on the surface at $z = 0$ and on the curved surface and is a constant V_0 on the surface at $z = L$.
 a) [15] Show that the potential inside the cylinder can be expressed in the form
 \[
 \Phi(r, z) = \sum_{n=1}^{\infty} A_n \sinh \left(\frac{x_{0n} z}{a} \right) J_0 \left(\frac{x_{0n} r}{a} \right)
 \] (2)
 where x_{0n} is the nth zero of the Bessel function $J_0(x)$.
 b) [10] Find the coefficients A_n. Recall that
 \[
 \frac{d}{du} [u^\nu J_\nu(u)] = u^\nu J_{\nu-1}(u)
 \] (3)

3. [15] A sphere has radius a, is centered on the origin, and is made up of a uniform, linear dielectric material with dielectric constant $\varepsilon/\varepsilon_0$. A point charge q is located at the origin. Find the surface and volume bound charge densities.

4. [30] An infinite, conducting plane at $z = 0$ carries a uniform current per unit transverse length, $K \hat{y}$.
 a) [10] Find the magnetic induction \vec{B} everywhere outside of the plane.
 b) [10] A second infinite, conducting plane at $z = -d$ carries a uniform current per unit transverse length, $-K \hat{y}$. Use the Lorentz force law to find the pressure that the first plane exerts on the second. Is it attractive or repulsive?
 c) [10] Repeat part (b), this time using the Maxwell stress tensor.