Problem 1 [20 points]
Consider a substance composed of identical particles of mass m. Using classical statistics, calculate the most probable value, K_m, of the kinetic energy K of the center of mass of a particle. Compare it with the canonical average kinetic energy \bar{K} of a particle. If the two values are different, explain why.

Problem 2 [30 points]
Consider a system of localized identical quantum harmonic oscillators with an angular frequency ω. The energy of an oscillator is quantized by $\varepsilon_n = \hbar \omega / 2 + n\hbar \omega$, where $n = 0, 1, 2, \ldots$. The system has been equilibrated with a thermostat at a temperature T.

1. [5 points] Calculate the average \bar{n} of the quantum number n as a function of T.

2. [10 points] Calculate the root-mean-square fluctuation
 \[\Delta n = \left(\bar{n} - \bar{n} \right)^{1/2} \]
 and the relative fluctuation\[v = \frac{\Delta n}{\bar{n}} \]
as functions of T.

3. [5 points] Show that $v > 1$ at any temperature.

4. [10 points] For one of the oscillators, let \tilde{p}_1 be the probability of finding it in an excited state with $n > 1$. In other words, if numerous measurements of n have been made, \tilde{p}_1 is the fraction of the measurements that gave $n > 1$. Calculate \tilde{p}_1 and sketch qualitatively its dependence on T. Explain the physical meaning of this plot.

Problem 3 [30 points]
Consider a gas in equilibrium with a solid surface containing ν identical adsorption sites per unit area. The energy of an adsorption site is zero if it is unoccupied, ε_1 if singly occupied, and ε_2 if doubly occupied. These energies are independent of whether neighboring adsorption sites are occupied or vacant. The temperature of the system is T and the chemical potential of particles in the gas is μ. Apply the grand canonical formalism to calculate:
1. [10 points] The average number of adsorbed particles per unit area.

2. [10 points] The average energy of the adsorbed particles per unit area.

3. [10 points] The average entropy of the adsorbed particles per unit area.

Problem 4 [20 points]
Consider a three-dimensional free electron gas at zero temperature (degenerate electron gas). For an arbitrary axis x,

1. [10 points] Calculate the mean-square projection v_x^2 of the electron velocity on x.

2. [10 points] Calculate average speed v_{\perp} of the electrons in the plane normal to x.

Express your answers in terms of the Fermi energy ε_F and electron mass m.

Please note the Formula Sheet attached
Formula Sheet

Moments of the Gaussian function:

\[M_n = \int_0^\infty x^n e^{-x^2} dx. \]

(1)

Selected values: \(M_0 = \sqrt{\pi}/2, M_1 = 1/2, M_2 = \sqrt{\pi}/4, M_3 = 1/2, M_4 = 3\sqrt{\pi}/8, M_5 = 1, M_6 = 15\sqrt{\pi}/16. \)