1. [20 pts] Charge q is uniformly distributed on a straight line of length l along the z direction. Choose the middle point of the line charge as the origin.

 (a) Compute the electric dipole and quadrupole moments of the line charge.

 (b) Find the scalar potential $\Phi(r, \theta, \phi)$ for $r \gg l$ to the order of $1/r^3$.

2. [20 pts] The top surface of a cubic box is maintained at constant potential V, while all other surfaces are grounded at potential zero. The side length of the box is a.

 (a) Write down the differential equation for the potential $\Phi(x, y, z)$ inside the cube and its boundary conditions in cartesian coordinate system.

 (b) Solve for $\Phi(x, y, z)$. You may express the answer as a series sum.

3. [30 pts] A spherical thin shell of radius R is made of ideal conductor and initially charge neutral. Then it is placed in a uniform electric field $E_0 \hat{z}$.

 (a) Find the scalar potential Φ outside the shell.

 (b) Find the surface charge density $\sigma(\theta)$ at the outer surface of the shell, where θ is the polar angle defined respect to \hat{z}.

 (c) Suppose the shell now cracks into two equal halves along the plane perpendicular to \hat{z} and going through the center of the shell. How much external force is required to prevent the two halves from separating from each other?

4. [30 pts] A circular loop of radius R carries current I. It is within the xy plane and centered at the origin. The current flows counterclockwise when viewed from above the xy plane.

 (a) Find the magnetic induction $B(z)$ on the z axis.

 (b) Find the vector potential $A(r)$ off axis for $r \gg R$, show your steps.

 (c) Suppose the current decays over time, $I(t) = I_0 e^{-t/\tau}$. In what direction does the electromagnetic energy flow near the origin?