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The onset of synchronization in networks of networks is investigated. Specifically, we consider networks of
interacting phase oscillators in which the set of oscillators is composed of several distinct populations. The
oscillators in a given population are heterogeneous in that their natural frequencies are drawn from a given
distribution, and each population has its own such distribution. The coupling among the oscillators is global,
however, we permit the coupling strengths between the members of different populations to be separately
specified. We determine the critical condition for the onset of coherent collective behavior, and develop the
illustrative case in which the oscillator frequencies are drawn from a set of �possibly different� Cauchy-Lorentz
distributions. One motivation is drawn from neurobiology, in which the collective dynamics of several inter-
acting populations of oscillators �such as excitatory and inhibitory neurons and glia� are of interest.
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In recent years, there has been considerable interest in
networks of interacting systems. Researchers have found that
an appropriate description of such systems involves an un-
derstanding of both the dynamics of the individual oscillators
and the connection topology of the network. Investigators
studying the latter have found that many complex networks
have a modular structure involving motifs �1�, communities
�2,3�, layers �4�, or clusters �5�. For example, recent work
has shown that as many kinds of networks �including isotro-
pic homogeneous networks and a class of scale-free net-
works� transition to full synchronization, they pass through
epochs in which well-defined synchronized communities ap-
pear and interact with one another �3�. Knowledge of this
structure, and the dynamical behavior it supports, informs
our understanding of biological �6�, social �7�, and techno-
logical networks �8�.

Here we consider the onset of coherent collective behav-
ior in similarly structured systems for which the dynamics of
the individual oscillators is simple. In seminal work, Kura-
moto analyzed a mathematical model that illuminates the
mechanisms by which synchronization arises in a large set of
globally coupled phase oscillators �9�. An important feature
of Kuramoto’s model is that the oscillators are heterogeneous
in their frequencies. And, although these mathematical re-
sults assume global coupling, they have been fruitfully ap-
plied to further our understanding of systems of fireflies, ar-
rays of Josephson junctions, electrochemical oscillators, and
many other cases �10�.

In this work, we study systems of several interacting
Kuramoto systems, i.e., networks of interacting populations
of phase oscillators. Our motivation is drawn not only from
the applications listed above �e.g., an amusing application

might be interacting populations of fireflies, where each
population inhabits a separate tree�, but also from other bio-
logical systems. Rhythms arising from coupled cell popula-
tions are seen in many of the body’s organs �including the
heart, the pancreas, and the kidneys, to name but a few�, all
of which interact. For example, the circadian rhythm influ-
ences many of these systems. We draw additional motivation
from consideration of how neuronal tissue is organized. Al-
though we do not consider neuronal systems specifically in
this paper, we note that heterogeneous ensembles of neurons
often exhibit a “network-of-networks” topology. At the cel-
lular level, populations of particular kinds of neurons �e.g.,
excitatory neurons� interact not only among themselves, but
also with populations of other distinct neuronal types �e.g.,
inhibitory neurons�. At a higher level of organization, various
anatomical regions of the brain interact with one another as
well �6�.

Although our network is simple, it is novel in that we
include heterogeneity at several levels. Each population con-
sists of a collection of phase oscillators whose natural fre-
quencies are drawn at random from a given distribution. To
allow for heterogeneity at the population level, we let each
population have its own such frequency distribution. In ad-
dition, our system is heterogeneous at the coupling level: we
consider global coupling such that the coupling strengths be-
tween the members of different populations can be separately
specified.

The assumption of global �but population-weighted� cou-
pling permits an analytic determination of the critical condi-
tion for the onset of coherent collective behavior, as we will
show. While this assumption may not strictly apply in some
applications, our results provide insight into the behavior of
networks of similar topology even if the connectivity is less
than global.

We begin by specifying our model and deriving our main*ebarreto@gmu.edu
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results. We then discuss several illustrative examples. Con-
sider first a two-species Kuramoto model. We label the sepa-
rate species � and � and assume that there are N� and N�

such oscillators in each population, respectively. Thus the
system equations are

d�i

dt
= ��i + �

k��

N�
�
j=1

N�

sin�� j − �i − ����

+ �
k��

N�
�
j=1

N�

sin�� j − �i − ���� ,

d�i

dt
= ��i + �

k��

N�
�
j=1

N�

sin�� j − �i − ����

+ �
k��

N�
�
j=1

N�

sin�� j − �i − ���� .

Here, � is an overall coupling strength, the �’s provide ad-
ditional heterogeneity in the coupling functions, and the ma-
trix

K = �k�� k��

k�� k��
� �1�

defines the connectivity among the populations �11�.
For arbitrarily many different species, let � range over the

various population symbols � ,� , . . . with the understanding
that depending on the context, � may represent either a label
�when subscripted� or a variable. Thus we have

d�i

dt
= ��i + �

��
��

k���

N��
�
j=1

N��

sin�� j� − �i − �����	 .

The ��i are the constant natural frequencies of the oscillators
when uncoupled, and are distributed according to a set of
time-independent distribution functions G����� �12�.

We define the usual Kuramoto order parameter for each
population, i.e.,

r�ei�� =
1

N�
�
j=1

N�

ei�j .

Here, r� describes the degree of synchronization in each
population, and ranges from 0 to 1. Using this, the above
equations can be expressed as

d�i

dt
= ��i + �

��

�k���r�� sin���� − �i − ����� .

Assuming that the N� are very large, we solve for the onset
of coherent collective behavior by using a distribution func-
tion approach. Thus instead of discrete indices, we imagine
continua of oscillators described by distribution functions
F��� ,�� , t� such that F��� ,�� , t�d�d�� is the fraction of �
oscillators whose phases and natural frequencies lie in the
infinitesimal volume element d�d�� at time t. Note that in
the N�→	 limit,

G����� = 

0

2


F���,��,t�d� ,

and the order parameters are given by

r�ei�� =
 
 F�ei�d�d��. �2�

In this context, the distribution functions satisfy the equa-
tions of continuity, i.e.,

�F�

�t
+ �� · �F�

d�

dt
�̂� = 0,

and if we write F��� ,�� , t�= f��� ,�� , t�G�����, we have

� f�

�t
+

�

��
���� + �

��

�k���r�� sin���� − � − ������f�� = 0.

�3�

The incoherent state has � distributed uniformly over
�0,2
�, so that f�=1 /2
 and r�=0. These satisfy Eq. �3�
trivially. We test the stability of this solution by perturbing it.
Note that a perturbation to f� leads to a perturbation of r�,
and we expect these perturbations to either grow or shrink
exponentially in time, depending on the overall coupling
strength �. The marginally stable case occurs at a critical
value �� at which coherent collective behavior emerges.

Thus we write f�=1 /2
+ ��f��est and r�= ��r��est, where
��f�� and ��r�� are small. Inserting the first of these into the
continuity equation �Eq. �3��, and keeping only first-order
terms, we obtain

s��f�� + ��

�

��
��f�� =

1

2

�
��

�k�����r���

�cos���� − � − ����� .

The solution to this equation is

��f�� =
1

4

�
��

�k�����r���� ei����−�−�����

s − i��

+
e−i����−�−�����

s + i��
	 .

�4�

Consistency demands that the perturbations ��f�� and ��r��
be related to each other via the order parameter equation, Eq.
�2�. This yields our main result, as follows. Equation �2�
becomes

��r��estei�� = 

−	

	

G�����

0

2
 � 1

2

+ ��f��est�ei�d�d��.

The integral involving 1 /2
 is zero. Inserting the solution
for ��f�� from Eq. �4�, one obtains �13�

��r��ei�� = �1

2



−	

	 G�����
s − i��

d��	�
��

�k�����r���e
i����−�����.

Define the bracketed expression to be g��s�, and define z�

= ��r��ei��. Then, we have
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z� = g��s��
��

�k���e
−i����z��.

Now define the complex quantity k̄���=�k���e
−i����. Using

the Kronecker delta ����, the above equation can be written

�
��

�k̄��� −
����

g��s�
�z�� = 0.

In matrix notation for the case of two populations labeled
� and �, this is

 k̄�� −
1

g��s� k̄��

k̄��
k̄�� −

1

g��s�
��z�

z�
� = 0. �5�

This equation has a nontrivial solution if the determinant of
the matrix is zero. This condition determines the growth rate

s in terms of �, k̄���, and the parameters of the distributions
G����� �via g��s��.

To illustrate the resulting behavior, we note that g��s� can
be evaluated in closed form for a Cauchy-Lorentz distribu-
tion

G����� =
�




1

��� − ���2 + �
2 , �6�

where ��, the mean frequency of population �, and the half
width at half maximum � are both real, and � is positive.
One obtains

1

g�����
= 2�s + � + i��� .

Using this, the determinant condition for the two-population
case reduces to

�k̄�� − 2�s + � + i�����k̄�� − 2�s + � + i���� − k̄��k̄�� = 0.

For simplicity, we set the phase angles ���� to zero for the
remainder of this paper �14�. In this case, the matrix elements

k̄��� are purely real, so that k̄���=�k���. The determinant
condition then becomes

��k�� − 2�s + � + i������k�� − 2�s + � + i����

− �2k��k�� = 0. �7�

Notice that if �=0, then s=−�− i��, indicating that the
incoherent state is stable for zero coupling �since −� is
negative�. We imagine increasing �or decreasing� � until s
crosses the imaginary axis at a critical value ��. At this point,
the incoherent state loses stability and coherent collective
behavior emerges in the ensemble. Thus the critical value ��

can be determined from the determinant condition by setting
s= iv, where v is real �so that the perturbations are margin-
ally stable�, and equating the real and imaginary parts of the
left side of Eq. �7� to zero. This results in two equations
which can be solved simultaneously for the two �real� un-
knowns � and v.

For our first example, we choose two identical popula-

tions; we set �=�= and ��=��=�. �A more generic
example will follow.� Denoting D=det�K� and T=tr�K�, we
separate the real and imaginary parts of Eq. �7� to obtain

D�2 − 2T� + 42 − 4�v + ��2 = 0,

�v + ���4 − �T� = 0. �8�

One solution to these equations is

v� = − �, �� = �T � �T2 − 4D

D
� ,

which is valid for T2�4D, since � is assumed to be real.
Notice that the appropriate solution as D→0 �using the
negative sign for T�0 and the positive sign for T�0� is

v� = − �, �� =
2

T
,

as can be verified by setting D=0 in Eq. �8� directly. Another
solution is

v� = − � �


T
�4D − T2, �� =

4

T
.

Finally, setting T=0 in Eq. �8� yields v�=−� and ��

= �
2

�−D
for D�0, and no solution for D�0. These results

are summarized in Table I.
Thus the critical values �� are determined by T, D, and .

To illustrate this result, we begin by discussing a particular
example. Consider the matrix

K = �1 − 1

1 0
� ,

which has trace T=1 and determinant D=1. This corre-
sponds to case 2 in Table I, from which we find that ��

=4 /T. Figure 1 shows the results of a numerical simulation
of two populations of 10 000 oscillators each, using =1.
The order parameters r� vs � are shown, and we can see that
the oscillator populations are incoherent for � values below
the predicted critical value ��=4, and that they grow increas-
ingly synchronized as � is increased beyond ��.

Next, we examined eight different connectivity matrices
K that were chosen to sample the various regions in T−D
space. Table II shows these matrices and the corresponding
value�s� of ��. These predictions were tested by numerically
calculating the order parameters r� for a range of coupling

TABLE I. Solutions to Eq. �8� for two identical populations.
D=det�K� and T=tr�K�, where K is the connectivity matrix �Eq.
�1��, and  is the width parameter in Eq. �6�.

Case Condition v� ��

1 T2�4D −� � T��T2−4D
D

�
2 T2�4D −��



T
�4D−T2 4

T

3 D=0 −� 2
T

4 T=0, D�0 −� �
2

�−D

5 T=0, D�0 no solution no solution
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values � �15�. Results are shown in Fig. 2. The various cases
are located by letter in the T−D plane according to the trace
and determinant of the matrices, and the corresponding inset
shows the numerically calculated order parameters plotted vs
�, with the predicted critical coupling indicated by a vertical
line at �=��. For example, the inset to case A �with �T ,D�
= �1,1�� corresponds to Fig. 1, which was discussed above. It
can be seen that for all cases, the onset of synchronization
occurs as predicted.

Note that more than one prediction for �� may be speci-
fied by our analysis �see Table I�. The solutions closest to
�=0 are the relevant ones, because we expect the incoherent
state to lose stability once the first �� solution is encoun-
tered. There are two possible cases depending on the sign of
D. First, if the two solutions have the same sign, then there is
only one critical value �� �which may be positive or negative
depending on the sign of the trace� for the onset of synchro-
nization. This occurs for D�0 and T�0, as can be seen in

Fig. 2. �Interestingly, for D�0 and T=0, synchronization
does not occur for any �.� The other case occurs for D�0,
for which the two �� solutions have opposite signs. In this
case, there are two critical values �� for the onset of
synchronization—one on either side of �=0. This can also
be observed in Fig. 2.

In the more general case in which the various populations
have different natural frequency distributions, it is not typi-

TABLE II. Connectivity matrices K chosen to sample T-D
space.

Case Matrix T D ��

A �1 −1

1 0 � 1 1 4

B �−2 −3

1 1 � −1 1 −4

C � 3 1

−3.5 −1 � 2 0.5 2�2−�2�=1.172

D � −3 1

−3.5 1 � −2 0.5 2�−2+�2�=−1.172

E �−1 −1

1 2 � 1 −1 −�1��5�=−3.236,1.236

F � 1 1

−1 −2 � −1 −1 1��5=−1.236,3.236

G � 2 1

−3 −2 � 0 −1 �2

H �1 −1

2 −1 � 0 1 none

FIG. 1. Numerical calculation of the order parameters �� , △�
vs � for case A in Table II. The vertical line corresponds to the
predicted value ��=4. The data point nearest �� is at �=4.15.

FIG. 2. Numerical simulations using the ma-
trices listed in Table II for identical populations.
The letters indicate the placement of each case in
the T-D plane, and the corresponding insets show
numerical calculations of the order parameters
�� , △� vs � for that case �in all cases, �=0 is
in the center of the horizontal axis�. Vertical lines
in the insets indicate the predicted value�s� ��

listed in Table II for the onset of coherent collec-
tive behavior. In all cases, we used =1. Note
that for D�0, there is one value of ��, whose
sign corresponds to the sign of the trace T. If D
�0 and T=0, then synchronization is not pos-
sible for any coupling strength. For D�0, there
are two values of ��: one positive, and one
negative.
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cally possible to describe the onset of synchronization in
terms of the determinant and trace of the coupling matrix
K=k��� alone. We now consider this situation, but retain the
Cauchy-Lorentz form of the natural frequency distributions
for convenience. We manipulate Eq. �7� as follows. Let s
= iv �i.e., purely imaginary, to consider the marginally stable
case� and define a=�+ i�v+��� and b=�+ i�v+���. We
obtain

D�2 − 2��bk�� + ak��� + 4ab = 0. �9�

There are two unknowns in this equation: � and v. Equation
�9� is a quadratic equation in � with complex coefficients,

and we can easily obtain two complex solutions ��1,2� as
functions of v. Since the critical values �

�

�1,2� must be real,
we solve for the roots of Im���1,2��, and evaluate Re���1,2�� at
these roots. This yields the possible critical values �

�

�1,2�.
Typically, these steps must be performed symbolically and/or
numerically; we used MATLAB® �16�. As before, the values
of �

�

�1,2� that are closest to zero �on either side� are the rel-
evant values.

To illustrate, we choose two populations with Cauchy-
Lorentz natural frequency distributions �Eq. �6�� with param-
eters �=1, ��=2, �=0.5, and ��=4. We consider the

−4 −3 −2 −1
−2

0

2

4

6

v

Im
(η

)

−4 −3 −2 −1
−4

−3

−2

−1

0

1

v

R
e(

η)

(a)

(b)

FIG. 3. Case E, different populations. The upper panel shows
Im���1,2��, with the vertical lines identifying roots at v1=−4.024
and v2=−1.722. The lower panel shows Re���1,2��; values at the
roots found above are indicated by horizontal lines, yielding �

�

�1�

=0.515 and �
�

�2�=−2.809. Thus we expect synchronization to occur
at these values as � is either increased or decreased away from zero.

FIG. 4. Case E, different populations. Calculations of the order
parameters vs � confirm that the onset of synchronization occurs at
��=−2.809 and 0.515 �vertical lines�, as predicted in Fig. 3.

−6 −5 −4 −3 −2 −1
−4

−2

0

2

4

6

v

Im
(η

)

−6 −5 −4 −3 −2 −1
−2

0

2

4

6

v

R
e(

η)

(a)

(b)

FIG. 5. Case A, different populations. Panels as in Fig. 3. Note
that the standard branch cut leads to discontinuities and the occur-
rence of two roots for Im���1���v� �solid lines, upper panel�, and
none for Im���2���v� �dotted lines, upper panel�. From the lower
panel we find ��=2.189,4.501, taking care to obtain these from
Re���1�� �solid line, lower panel�. We expect to find synchronization
onset at the smaller of these values.

FIG. 6. Case A, different populations: The onset of synchroni-
zation occurs at ��=2.189 �vertical line�, as predicted in Fig. 5. No
synchronization is observed for smaller values of � �not shown�.
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same K matrices as before, i.e., those listed in the second
column of Table II. Case E is straightforward; the analysis is
illustrated in Fig. 3 and the numerical verification is in Fig.
4. Note that since Eq. �9� has complex coefficients, obtaining
� typically involves taking the square root of a complex
number. Therefore one must be mindful of branch cuts when
obtaining symbolic and/or numerical solutions. This is im-
portant in the analysis for case A, shown in Figs. 5 and 6.
Finally, case H, which exhibits no synchronization for iden-
tical populations for any value of �, does show synchroniza-
tion in the present case. The analysis is shown in Figs. 7 and
8.

We close by giving an example with three different popu-
lations. We choose the same Cauchy-Lorentz distributions as
above, and add a third with �=1 /3 and ��=1. We use the
following K matrix:

− 1 1 1

1 − 1 1

1 1 − 1
� .

The procedure for deriving �� proceeds as above, except that
Eq. �7� is replaced by a third-degree polynomial in �. Figure
9 shows the imaginary and real parts of the three � solutions.
�Note that the branch cuts are more complicated.� The pre-
dicted onset of synchronization was verified, as shown in
Fig. 10.

−6 −5 −4 −3 −2 −1 0 1

0

2

4

6

v

Im
(η

)

−6 −5 −4 −3 −2 −1 0 1

0

4

8

−4

2

6

−2

v

R
e(

η)

(a)

(b)

FIG. 7. Case H, different populations. We find ��

=−1.429,5.000.

FIG. 8. Case H, different populations. Synchronization occurs at
��=−1.429 and 5.000 �vertical lines�, as predicted in Fig. 7.

−4 −3 −2 −1 0

−2

−1

0

1

2

3

v

Im
(η

)

−4 −3 −2 −1 0

−1

0

1

2

3

v
R

e(
η)

(b)

(a)

FIG. 9. �Color online� Three populations. The imaginary and
real parts of ��1,2,3� are plotted to illustrate the discontinuities due to
branch cuts. The analysis proceeds as in the previous cases. Be-
cause of branch cuts, two roots occur on ��1�, one on ��2�, and none
on ��3�. Evaluating the real parts appropriately, we find ��

=−0.891,−0.564,2.303.

FIG. 10. Three populations. Synchronization occurs at ��

=−0.564 and 2.303, as predicted in Fig. 9.
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In conclusion, we have described how to determine the
onset of coherent collective behavior in systems of interact-
ing Kuramoto systems, i.e., systems of interacting popula-
tions of phase oscillators with both node and coupling het-
erogeneity.
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