
PHYS 705: Classical Mechanics
Euler’s Equations
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We have seen how to describe the kinematic properties of a rigid body.  Now, 

we would like to get equations of motion for it. 

Euler’s Equations (set up)

1. We will follow the Lagrangian Formalism that we have developed. 

1 1

2 2 i ij jT I    ω I ω

3. As we have seen previously, the rotational kinetic energy is given by

2. For generalized coordinates, we will use the Euler’s angles with one point 

of the rigid body being fixed (no translation, just rotation) 

4. Choose the body axes to coincide with the Principal axes, then

21

2 ii iT I 

2

( no sum;       is diagonalized! )ijI



5. A general rotation (an inf. one  here)         along a given axis in the body frame 

can be decomposed into three rotations along the Euler’s angles. Similarly, the 

time rate of change of this rotation                        can also be written as, 

Note: 

-We still have the freedom to align             (from the body axes) to any one of 

the 3 Principal axes.

- The three Euler’s angles                   give the orientation of the Principal axes of 

the body axes relative to the fixed axes. 

Euler’s Equations (set up)

d dtω Ω

 3ˆ ˆx z

 , ,  

    ω ω ω ω

- These three different pieces correspond to the time rate of change of the 

individual rotations along each of the three Euler’s angles.

dΩ

(we write this as a sum since the 
angular changes are infinitesimal)
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a)        :  We are in the fixed axes and we do a rotation along the 

Now, our task is to project      along the three axes in the body coordinate  

Euler’s Equations (set up)

ω

 1 2 3, ,x x x

 To express it in the body axes, we apply the Euler rotations BCD

We will go through the three individual Euler steps now:

 3 ˆx z

 In the fixed axes, we have   
0

0
fixed



 
   
 
 

ω


 
0 sin sin

0 cos sin

cos
body

  
  

  

  
      

      

ω BCD




 

Note: Since                   is 

already in the      

direction, 

 0,0,
T


ẑ

0 0

0 0

 

   
      
   
   

D
 
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b)        :  This is the (2nd) rotation along the “line of nodes” (             in the 

intermediate                     coordinate system)

Euler’s Equations (set up)

ω

 To express it in the body axes, we apply the Euler rotations BC

 1 ˆx x

 In the intermediate axes, we have    0

0


 
 

  
 
 

ξ
ω



 
cos

0 sin

0 0
body

  
 

   
   

     
   
   

ω BC

 


Note: Since                   is 

already in the      

direction, 

 ,0,0
T


x̂

0 0

0 0

    
   

   
   
   

C

 

 , ,  

5



c)        :  Finally, the last rotation is along the             of the  

Euler’s Equations (set up)

ω

 To express it in the body axes, we apply the Euler rotations B

 3 ˆx z

 In the                        axes, we have   
'

0

0 



 
   
 
 

ω



 
0 0

0 0
body

 

   
       
   
   

ω B

 

Note: Since                   is 

already in the      

direction, 

 0,0,
T

ẑ
0 0

0 0

 

   
      
   
   

B

 

 ', ', '  

 ', ', '  
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 Putting all three pieces together, we have

Euler’s Equations (set up)

These are the components of       expressed in the “body” frame using the 

Euler’s angles.

ω

sin sin cos

cos sin sin

cos
  

    
    

  

 
 

     
  

ω ω ω ω

 
 

 
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Alternatively, one can think of how the vector       being 

“projected” along different set of bases:

- basis along the Euler directions

- basis along the body frame

Note: the basis set                           defining an 

infinitesimal rotation along the Euler angles is 

NOT an orthogonal set of vectors.

Euler’s Equations (set up)

'



 

1 2 3    ω e e e  

1e

2e

3e

 1 2 3, ,e e e

ω

ˆ ˆ ˆx y z    ω x y z
'

'

(Note: Here and onward, space frame is primed and body frame is unprimed.)
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Now, we will continue with our equation of motion for a rotating rigid body.

Euler’s Equations (derivation)

I is diagonalized since we’ve chosen the body 

axes to lay along the principal axes and we will 

call the nonzero diagonal elements, 

21

2 i iT I

ii iI I

i
i i

d T T
Q

dt q q

  
    

Without further assuming the nature of the applied forces acting on this 

system, we will use the following general form of the E-L equation:

is the generalized force (including 

forces derivable from conservative and 

non-conservative sources)

iQ
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Euler’s Equations (derivation)

sin sin cos

cos sin sin

cos

    
    

  

 
 

  
  

ω

 
 

 

Let calculate the equation of motion explicitly for     :

i

i

T T 
  

 


    (E’s sum)

      31 2
1 1 2 2 3 3I I I

   
  

 
  

    

        1 1 2 2 3 30 0 1I I I    

3 3I 

3 3

d T
I

dt



 

  




  i
i iI






 

21

2 i iT I 
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Now, we need

Euler’s Equations (derivation)
sin sin cos

cos sin sin

cos

    
    

  

 
 

  
  

ω

 
 

 

Note that:

31 2
1 1 2 2 3 3

i

i

T T
I I I

    
     

   
   

     

   1 1 2 2 1 1 2 2 12 1 20
T

I I I I     



    


1
2sic sinnos

  





  

2
1sin cosnsi

    






    

3 0








Thus, we have,
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Now, we need to calculate the generalized force with respect to       :

Euler’s Equations (derivation)

Since the Euler angle       is associated with a rotation about the      axis in the 

“body” frame, we have,

i
i

i

Q 


 
 r

F



 ẑ

 i r  i  r

ẑ

ir

sin

ˆ

i i

i
i

  











r

r
z r

r       A B C B C A

used 

12



 ˆ ii
i

   z rF

3ˆ N  z N



Finally, putting everything together, the E-L equation gives,

Euler’s Equations (derivation)

3 3 1 1 2 2 1 2 3I I I N    

- One can calculate the E-L equation for             but (they are ugly) we are not 

doing them here !

d T T
Q

dt  
  

    

 3 3 1 2 1 2 3I I I N   

, 

- There is a smarter way to get EOM for the other two dofs…

 Since nothing required our choice of       to lay along            .  Then, by a 

symmetry argument, the other components of        should have a SIMILAR form. 
3ˆ( )xz3

ω
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This then gives,

Euler’s Equations (derivation)

(same cyclic symmetry as the 

equation for      )

 
 
 

1 1 2 3 2 3 1

2 2 3 1 3 1 2

3 3 1 2 1 2 3

I I I N

I I I N

I I I N

  

  

 

  

  

  





3

In principle, one can get out the                       equation by solving for                  

simultaneously from the            Euler-Lagrange equations.

These are called the Euler’s Equations and the motion is described in terms of 

the Principal Moments ! 

2 3and   2 3and  
, 
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The following is Goldstein’s (Newtonian) derivation.  We start with,

Euler’s Equations (derivation)

Writing this vector equation out in the components of the body axes,

Choose the body axes to coincide with the Principal axes, so that

bodyfixed

dd

dt dt
    


 




 
L

N
L

ω L

i
i ijk j k

dL
N L

dt
  

i i iL I 

i
i i ijk j k k

d
N I I

dt

      
 

(no sum, just writing out the components)

(no sum)
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Writing this index equation out explicitly for                   , we have,

Euler’s Equations (derivation)

So, this gives us the same set of Euler’s equations as previously.

 1 1 123 2 3 3 132 3 2 2 1 1 2 3 2 3 1I I I I I I N               

 3 3 312 1 2 2 321 2 1 1 3 3 1 2 1 2 3I I I I I I N              
 2 2 231 3 1 1 213 1 3 3 2 2 3 1 3 1 2I I I I I I N               

1,2,3i 

16

The Euler’s Equations describes motion in the body frame.         and      are 

vectors expressed in the body frame. 

ω N



A symmetric top means that: 

Torque Free Motion of a Symmetric Top

For concreteness, let 

1 2 3I I I 

 
 
 

1 1 2 3 2 3

2 2 3 1 3 1

3 3 1 2 1 2 0

I I I

I I I

I I I

  

  

 

 

 

  





Euler equations (torque free) are:

1 2 3I I I  (example will be a long cigar-like 

objects such as a juggling pin)

Trivial case (     is along one of the principal axes):ω

L ωis along one of the eigendirection of      and  ω I

   L Iω ω L 

0ω

body

d

dt
     
 
L

ω L
or

17
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Torque Free Motion of a Symmetric Top

We still have,                  since 3 0 

3 3
1 2 3 2 3

2 1

2 1

1 1

3 1 3 1
2 3 1 3 1

I I

I I

I I

I I

I I I I

    

    

    
    
   
    

    
   





Note:      is along the body’s symmetry axis 

(symmetric top).

Interesting case (     is NOT along one of the principal axes):ω

And, the rest of the Euler equations give,

1 2I I

3x̂3 const 

1 2I INote:
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Torque Free Motion of a Symmetric Top

1 2

2 1

 
 

 
 




Then, the remaining two Euler’s equations reduce simply to,

Let 3 1
3

1

I I
const

I


 
   

 

Taking the derivative of the top equation and substitute the bottom on 

the right, we have,

  2
1 2 1 1          

   1 0cost A t   

Since,                we have the solution: 2 0 

and    2 0sint A t   

will be determined by ICs0,A 
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Torque Free Motion of a Symmetric Top

Looking at this deeper…  First in the “body” frame,

In the “body” axes, this description for       can be visualized as       

precessing about      .

So, 2 2 2
1 2 3 const     constω

- We know that       is a constant and                  oscillates harmonically in a circle.  3 1 2& 

ωω

3x̂

3x

2x
1x

ω
-The projection of     onto the      axis is fixed.

-The projection of     onto the              plane rotates 

as a parametric circle with a rate of

ω

ω

3x

1 2x x

3 1
3

1

I I
const

I


 
   

 
(This is called the “body” cone)

20



#1 and #2 means that      must also precesses around L in the fixed frame

Torque Free Motion of a Symmetric Top

Observations: 

Now, let look at this same situation in the “fixed” frame,

1. Energy is conserved in this problem so that  
1

2rotT const  ω L

ω

3 'x

2 'x
1 'x

ω
- Assume L lies along the        axis in the fixed frame.

- L is a constant vector

- The dot product            must remain constant.

3 'x

(This is called the “space” cone)

2. The situation is torque free so that L is fixed in space.

L

ω L

21



Torque Free Motion of a Symmetric Top
Observations (in the fixed axes) cont: 

3. The three vectors                               always lie on a plane.3ˆ, , ( )bodyω L x

Consider the following product:

 3ˆ L ω x where        is in the     direction in the body axes 3x̂ ẑ

     2 1 1 2 2 1 1 2ˆ ˆ ˆ ˆ         L x x L x L x

Since the body axes are chosen to lie along the principal axes, we have

( )i i iL I no sum

     3 2 1 1 1 2 2ˆ I I       L ω x

1 2I I(for a symmetric top)

22
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Torque Free Motion of a Symmetric Top
Observations (in the fixed axes) cont: 

This means that all three vectors                 always lie on a plane.3ˆ, ,ω L x

 3ˆ 0  L ω x (for a symmetric top with 

or without torque)

3x̂ L

ω3ˆω x

Summary:

- precesses around the “body” cone  ω

- also precesses around the “space” cone  ω

- All three vectors                 always lie on a plane

- L is chosen to align with        in the space axes 

3ˆ, ,ω L x

3ˆ 'x

23
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Torque Free Motion of a Symmetric Top

This can be visualized as the body cone rolling either inside or outside of 

the space cone !

Case 1: 1 3I I Case 2: 1 3I I

3 1
3

1

I I

I


 
   

 

Precession Rate

24



Stability of General Torque Free Motion

Consider torque-free motion for a rigid body with 1 2 3I I I 

Again, we have chosen the body axes to align with the principal axes.

As an example, we will consider rotation near the      axis (similar analysis 

can be done near the other two principal axes).

1x

 this means that we have, 

   1 1 2 3ˆ ˆ ˆt t   ω x x x

where                       are small time-dependent perturbation to the motion    ,t t 

For stability analysis, we wish to analyze the time evolution of these 

two quantities to see if they remain small or will they blow up.
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Stability of General Torque Free Motion

Plugging our perturbation into the Euler’s equations, we have 

Assume small perturbations and drops higher order terms (       ), the first 

equation gives,



   
   
   

1 1 2 3 2 3 1 1 2 3

2 2 3 1 3 1 2 3 1 1

3 3 1 2 1 2 3 1 2 1

0 0

0 0

0 0

I I I I I I

I I I I I I

I I I I I I

    

    

    

      

      

      

 


 

1 0 
1 const 
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Stability of General Torque Free Motion

Taking the derivative of the top equation and substitute the bottom into it,

And, the other two equations reduces to,

3 1
1

2

1 2
1

3

0

0

I I

I

I I

I

  

  

 
  
 
 

  
 





3 1 3 1
1 1

2 2

1 2
1

3

I I I I I I

I II
    

    
    
   

 
 
 



  3 1 1 2 2
1

2 3

I I I I

I I
  

  
  
 


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Stability of General Torque Free Motion

And, we can write 

Since we have chosen to have                        , the constant 

2  

1 2 3I I I 

  1 22 21

2 3

3
1 0

I I I I

I I


 
  

The solution to this ODE is oscillatory, i.e., 

  i t i tt Ae Be    

where  A, B, A’, & B’ depends on ICs  ' 'i t i tt A e B e    and

Thus, both of the small perturbations are oscillatory and the 

rotation about the      axis is stable !1x

(Note: we have switch the order 

of              so that        is explicitly 

positive.)

21 3,I I
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Stability of General Torque Free Motion

However, a similar analysis will show that the oscillatory motion for the 

perturbations will become exponential if we consider rotation near the        

axis. 

With a similar calculation for rotation near the       , one can show again 

that small perturbations are oscillatory and motion about the      axis is 

stable. 

Summary:

Without any applied torque, motion around the principle axes 

with the largest and the smallest principal moments are stable

while motion around the intermediate axis is unstable.

3x
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http://www.youtube.com/watch?v=XALe27bnUm8


