
PHYS 705: Classical Mechanics
Hamilton-Jacobi Equation
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Hamilton-Jacobi Equation

There is also a very elegant relation between the Hamiltonian 

Formulation of Mechanics and Quantum Mechanics.

The Hamilton-Jacobi equation also represents a very general method in 

solving mechanical problems.

Let say we are able to find a canonical transformation taking our 2n phase 

space variables directly to 2n constants of motion,                 i.e., ,i iq p

To do that, we need to derive the Hamilton-Jacobi equation.

i iP i iQ 

 ,i i 
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To start…



Hamilton-Jacobi Equation

One sufficient condition to ensure that our new variables are constant in 

time is that the transformed Hamiltonian K shall be identically zero. 

If that is the case, the equations of motion will be, 

Recall that we have the new and old Hamiltonian, K and H, relating 

through the generating function by:
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Hamilton-Jacobi Equation

With K identically equals to zero, we can write:

For convenience in later calculations, we shall take F to be of Type 2 

so that its independent variables are the old coordinates       and the 

new momenta      .  In the same notations as previously, we can write

Now, in order to write H in terms of this chosen set of variables                , 

we will replace all the       in H using the transformation equation:
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-Since                are constants, the HJ equation constitutes a partial 

differential equation of (n+1) independent variables: 

- We used the fact that the new P’s and Q’s are constants but we have 

not specified in how to determine them yet.  

- It is customary to denote the solution      by S and called it the 

Hamilton’s Principal Function.

Hamilton-Jacobi Equation

Then, one can formally rewrite Eq. (*) as: note that                   since

This is a PDE for F2 and is known as the 

Hamilton-Jacobi Equation.
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Recall that for a Type 2 generating function, we have the following 

partial derivatives describing the canonical transformation:

Hamilton-Jacobi Equation

Suppose we are able to find a solution to this 1st order partial differential 

equation in (n+1) variables…

where we have explicitly written out the constant new momenta:

 2 1 1, , ,, , ;n nF S S q q t   
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Hamilton-Jacobi Equation

After explicitly taking the partial derivative on the RHS of Eq. (T1)

and evaluating them at the initial time     , we will have n equations that 

one can invert to solve for the n unknown constants        in terms of the 

initial conditions                     , i.e.,

Similarly, by explicitly evaluating the partial derivatives on the RHS of Eq. 

(T2) at time      , we obtain the other n constants of motion 
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Hamilton-Jacobi Equation

With all 2n constants of motion             solved, we can now use Eq. 

(T2) again to solve for      in terms of the              at a later time t.  

The two boxed equations constitute the desired complete solutions 

of the Hamilton equations of motion.

,i i 

 , ,i iq q t  , ,
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,i i iq

Then, with                           known, we can use Eq. (T1) again to evaluate 

in terms of              at a later time t. 

, , and i i iq 
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Hamilton Principal Function and Action

Now, let consider the total time derivative of the Hamilton Principal 

function S, 

 , ,
i

i

dS q t S Sq
dt q t
  

 
 
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Using Eq. (T1) and the Hamilton-Jacobi equation itself, we can 

replace the two partial derivatives on the right by     and H, ip

i i
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So, the Hamilton Principal Function is differed at most from the 

action by a constant, i.e.,
constantS L dt 
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Example: Solving Harmonic Oscillator with HJ

Recall, we have:  

( )f q kq 

m

0 x
2

( )
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, ; 0S SH q t
q t
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The Hamilton-Jacobi equation gives:  
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   
        

Recall that under this scheme, we have:  

P Q 0K  and  
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Example: Solving Harmonic Oscillator with HJ

( )f q kq 

m

0 x
2

( )
2

kqU q 

2 k m  2 2 2 21
2

H p m q E
m

  

2
2 2 21

2
W m q

m q
 

  
      

When H does not explicitly depend on time, 

we can generally try this trial solution for S:

   , , ,S q t W q t   

With this trial solution, we have                            and the HJ equation 

becomes:

S t    

:
so
recall LHS H

H 
 

  

(q and t are separable)
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Example: Solving Harmonic Oscillator with HJ

m

2
2 2 2 2W m q m

q
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The previous equation can be immediately 

integrated: 
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 1 1arcsin arcsin
2
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Example: Solving Harmonic Oscillator with HJ

m We don’t need to integrate yet since we only need 

to use                   in the transformation eqs:,S S
q
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 1 1arcsin arcsin
2
mt x q 

  
 

     
 

Example: Solving Harmonic Oscillator with HJ

m

Inverting the arcsin, we have

   2

2 sin 'q t t
m
  

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#2 eq:

The 2nd transformation equation gives,
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Example: Solving Harmonic Oscillator with HJ

m

with ' 

Substituting           , we have, q t

 
2

2 1
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mp t m 
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    22 1 sin 'p t m t    

    22 cos 'p t m t   

   2 cos 'p t m t   
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Completing the calculations, we still need to link the two constants of 

motion               to initial conditions:

Example: Solving Harmonic Oscillator with HJ

m

0 0@ 0, ,t q q p p  

   2

2 sin 'q t t
m
  


 

   2 cos 'p t m t   

Recall that the constant of motion  is H (=E) of the system so that we can 

calculate this by squaring q and p at time           :
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p m q
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And, we can calculate  at time            by dividing the 2 eqs:0t   0
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Hamilton Principal Function and Action

Most interestingly, let consider the total time derivative of the Hamilton 

Principal function S, 

 , ,
i

i

dS q t S Sq
dt q t
  

 
 


Using Eq. (T1) and the Hamilton-Jacobi equation itself, we can 

replace the two partial derivatives on the right by     and H, ip

i i
dS p q H L
dt

   i
i

Sp
q

 
  

0SH
t

    

So, the Hamilton Principal Function is differed at most from the 

action by a constant, i.e.,
constantS L dt 
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Another example in using the Hamilton-Jacobi 
Method (t-dependent H)

(G 10.8) Suppose we are given a Hamiltonian to a system as,

2

2
pH mAtq
m

  where A is a constant

0 0 00, 0,t q p mv  

Our task is to solve for the equation of motion by means of the 

Hamilton’s principle function S with the initial conditions

The Hamilton-Jacobi equation for S is:

; ; 0S SH q t
q t

  
    
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For a Type 2 generating function, we have the following partial 

derivatives for S:

Example in using the Hamilton-Jacobi Method

Recall that the Hamilton’s principle function S is a Type 2 generating 

function with independent variables 

with the condition that the canonically transformed variables are 

constants, i.e.,

 , ,S S q P t

andQ P  

 , ,
( 1)

S q t
p T
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 , ,q P t
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Example in using the Hamilton-Jacobi Method

Writing H out explicitly in the Hamilton-Jacobi equation, we have

Here, we assume a solution to be separatable of the form:

2

0 (*
2

)1 S mAtq
m tq

S 



    

; ;SH q t
q

 
  

     , ; ,S q t f t q g t  

Substituting this into the HJ Eq (*) above, we have,

     21 , ' , ' 0
2

f t mAtq f t q g t
m

     (     is partial time 

derivative here)

'

20



Example in using the Hamilton-Jacobi Method

Concentrating on the q dependent terms, they have to be independently 

add up to zero…  So, we have,

And, requiring the remaining two terms adding up to zero also, we have

 ' ,f t mAt 

     21 , 0,
2

' 'mAtf t
m

q f g tt q    

   
2

0,
2

mAtf t f  

   21'
2

g t f t
m

 

 
22 2 2 4

2 2
0 0 0

1 1'
2 2 2 4

mAt m A tg t f mAt f f
m m
   

         
   

Substituting  f (t) from above, we have
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Example in using the Hamilton-Jacobi Method
Integrating  wrt time on both sides, we then have,

 
22 5

30 0
040 6 2

Af fmA tg t t t g
m

    

Since the Hamilton-Jacobi Equation only involves partial derivatives of S,   

can be taken to be zero without affect the dynamics and for simplicity, we 

will take the integration constant       to be simply , i.e., 

Putting both f (t) and g(t) back into the Hamilton’s principle function, 

we have,

       22 2 5
0 03

0 0, ;
2 40 6 2

Af fmAt mA tS q t f q t t g
m

 
 

 
      
 

0g

0f  0f  

 
2 2 5 2

3, ;
2 40 6 2

mAt mA t AS q t q t t
m

  
 

     
 
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Example in using the Hamilton-Jacobi Method
We can apply Eq. T2 to solve for  ,

From the initial conditions, we have

Solving for q, we then have,

  3
2 5 22

6
, ;

40 22
mAt mA Aq t t

m
tS q t q      

  3, ,
6

S q t AQ q t t
m

 



    



  3

6
Aq t t t

m
  

0 0 00, 0,t q p mv  

 This implies that   00q  
 And, apply Eq. T1, we can solve for , 

    2

0
0

0

, ,
0

2 tt

S q t mAtp mv
q


 


  
      


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Example in using the Hamilton-Jacobi Method
Putting these two constants            back into our equation for q(t), we 

finally arrive at an explicit  equation of motion for the system:

  3

6 o
Aq t t v t 

, 

24

    2, ,
2

S q t mAtp t
q





  


Using Eq. T1 again, we have ,

 
2

02
mAtp t mv 

We just found that                  ,0mv 



Connection to the Schrödinger equation in QM
(This connection was first derived by David Bohm.)

where                and                  are the real amplitude and phase of

Let say this quantum particle is moving under the influence of a  

conservative potential U and its time evolution is then given by the 

Schrodinger equation:

We first start by writing a quantum wavefunction                in phase-

amplitude form, 

 ,tr ,A tr  ,S tr

 ,t r

2
2

2
i U

t m
  
   



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Connection to the Schrödinger equation in QM
Now, we substitute the polar form of the wavefuntion into the 

Schrodinger equation term by term:

:i
t



 iS Ai e i
t t



 


 

   1


SA
t

 



 
 

2 : iS ie A A S       
 




2 iS iSi i ie S A A S e A A S                      

     
 

  

 

   2

2 2 2
2

2
2

2

1

2

iS iS

iS

i i ie S A A S e A A S A S

ie A S A SAA S 

             
 

       
 

 





   



     ,, , iS tt A t e  rr r 

ImRecolor code:

ImRecolor code:
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Connection to the Schrödinger equation in QM

IM (black): i t  2

 21 22
2

2A A S A S
t m

A A A
     


Simplifying 
and          :

Regrouping:

 
2

21 2
2

A A S A S
t m

          




2A

2
2A SA

t m
      

Substituting these terms into the Schrodinger equation, dividing out the 

common factor           and separating them into real/imaginary parts, iSe 
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Connection to the Schrödinger equation in QM

 
2

22
22

S AA A S UA
t m

           




RE (blue):
i t  2

 
2 2

21
2 2

S A S U
t m A m

 
     




 
2 2

21
2 2

S AS U
m t m A

 
   




Simplifying:

Rearranging:

Now, for the real part of the equation, we have,

28

U



Connection to the Schrödinger equation in QM

 21 0
2

SS U
m t


   



Taking the limit               , we have,

This is the Hamilton Jacobi equation if we identify the quantum phase S

of      with the Hamilton Principal Function or the classical Action.

To see that explicitly, recall the Hamilton Jacobi equation is,

1
1

, , ; , , ; 0n
n

S S SH q q t
q q t

   
     

 

0
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Connection to the Schrödinger equation in QM

Now, for a particle with mass m moving under the influence of a 

conservative potential U,  its Hamiltonian H is given by its total energy:

 21 1
2 2

S SH U S U
m q q m
   

         

Using the “inverse” canonical transformation, Eq. (T1), we can write H as,

 21 0
2

SS U
m t


   



2

2
pH U
m

 

Substituting this into the Hamilton-Jacobi Equation, we have,

(This is the same equation for the phase of 

the wavefunction from Schrödinger Eq)

Sp
q

 
  
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Connection to the Schrödinger equation in QM

1. The neglected term proportional to      is called the Bohm’s quantum 

potential,

2. The imaginary part of the Schrödinger equation can be interpreted as the 

continuity equation for the conserved probability density                           with 

the velocity field given by                                     :  

2 *A   

2 2

2
AQ

m A





2

 v
t
 
 



/v S m p m  

Notes:

Note that this potential is nonlocal due to its spatial diffusive term

and it can be interpreted as the source of nonlocality in QM.

2
2A SA

t m
      
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Hamilton’s Characteristic Function

Let consider the case when the Hamiltonian is constant in time but we 

don’t a priori know what it is,

Now, let also consider a canonical transformation under which the new 

momenta are all constants of the motion,

  1,i iH q p 

AND we choose the new canonical momentum      to be the constant H itself.  

32

i iP 

1

Then, we seek to determine a time-independent generating function 

(Type-2) producing the desired CT. ,i iW q P

(the transformed      are not 
restricted a priori. )

iQ



Hamilton’s Characteristic Function

Similar to the development of the Hamilton’s Principal Function, since 

Now, since                is time-independent,                               and we have  

33

(Note: the indices inside W(q, P) are 

being suppressed.)

 ,W q P

is Type-2, the corresponding equations of transformation are

 ,
( 1)i

i

W q
p T

q





 ,
( 2)i

i

W q
Q T








 ,

0
W q

t





,i
i

W WH q
q t

  
   

1K  

 ,W q P



Hamilton’s Characteristic Function

is called the Hamilton’s Characteristic Function and 

is the partial differential equation (Hamilton-Jacobi Equation) for W.  

Here, we have n independent constants       (with                ) in determining 

this partial diff. eq.

34

 ,W q P

1, 0i
i

WH q
q


 

   

And, through Eqs T1 and T2, W generates the desired canonical 

transformation in which all transformed momenta are constants !

1 H i



Hamilton’s Characteristic Function

In the transformed variables               ,               , and the EOM is given by 

the Hamilton’s Equations,

(as required)

35

0i
i

KP
Q


  




where       are some integration 

constants determined by ICs.

 ,i iQ P 1K 

i iP or

1, 1
0, 1i

i

iKQ
i


    


1 1Q t  

, 1i iQ i 
i

By integrating, this immediately gives,

Note that       is basically time and its conjugate momenta                          is the 

Hamiltonian.
1Q 1 1P K 



Hamilton’s Characteristic Function

Then, to get a solution for               , we use the transformation equations 

(T1 & T2), 

36

can be directly evaluated 

by taking the derivatives of W

 ,i iq p

By solving the H-J Eq, we can obtain

 ,i i
i

i

W q
p

q





 ,i i
i

i

W q
Q









 ,W q 

ip

1, 1
, 1i

t i
i



 

  

can be solved by taking the 

derivatives of W on the RHR and 

inverting the equation 

iq

The set of 2n constants                 are fixed through the 2n initial 

conditions     0 , 0i iq p
 ,i i 



Hamilton’s Characteristic Function

37

When the Hamiltonian does not dependent on time explicitly, one can use

either 

- The Hamilton Principal Function                     or

- The Hamilton Characteristic Function  ,W q P
 , ,S q P t

to solve a particular mechanics problem using the H-J equation and they 

are related by:

    1, , ,S q P t W q P t 

Note: As we have seen earlier, the Hamilton Principal Function can be 
used when H dep on time explicitly but not the HCF.



Action-Angle Variables in 1dof

38

- Often time, for a system which oscillates in time, we 

might not be interested in the details about the EOM

but we just want information about the frequencies

of its oscillations.

- The H-J procedure in terms of the Hamilton Characteristic Function can 

be a powerful method in doing that.

- To get a sense on the power of the technique, we will examine the simple 

case when we have only one degree of freedom.

- We continue to assume a conservative system with                 being a 

constant
1H 



Action-Angle Variables in 1dof

39

Let say we know that the dynamic of a system is periodic so that 

Recall from our discussion for a pendulum on dynamical systems, we have 

two possible periodic states: 

   q t T q t 

libration rotation



p



p



Action-Angle Variables in 1dof

40

- Now, we introduce a new variable

called the Action Variable, where the path integral is taken over one full 

cycle of the periodic motion.

J p dq 

- Now, since the Hamiltonian is a constant, we have

  1,H q p 

- Then, by inverting the above equation to solve for p, we have

 1,p p q 



Action-Angle Variables in 1dof

41

- Then, we “integrate out” the q dependence in

One can then write that J is a function of      alone or vice versa, 

 1,J p q dq 

 1 H H J  

1

Since J is a function of the constant      alone, it is itself a constant. 1

- Now, instead of requiring our new momenta to be      , we requires 1

P J (another constant instead of       )1

P



- Here, in this context,      is called the Angle Variable.

Action-Angle Variables in 1dof

42

- From the transformation equations, the generalized coordinate Q

corresponding to P is given by Eq. T2

- Enforcing our new momenta P to be J and calling its conjugate coordinate     , 

we have

WQ
P





w

Ww
J





w

- Then, our Hamilton Characteristic Function can be written as

 ,W W q J



Action-Angle Variables in 1dof

43

- Correspondingly, using the Hamilton Equations,  the EOM for       is,

- Note, since the generating function W(q, P) is time independent, the 

Hamiltonian in the transformed coordinate K = H so that

   K J
w v J

J


 




   1 H H J K J   

w

- Now, since K is a constant, its partial derivative with J will also be a constant 

function of J , calling it 

   K J
v J

J





 v J



Action-Angle Variables in 1dof
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where      is an integration constant depending on IC.

The above diff. eq. can be immediately integrated to get 

 w v J

w vt  

- Thus, this Angle Variable w is a linear function of time !





Action-Angle Variables in 1dof

45

Using the transformation equation,                  , we then have, 

Now, let integrate w over one period T of the periodic motion.

T
T

ww dw dq
q


  




 

Ww
J





2

T

Ww dq
q J


 
 







Action-Angle Variables in 1dof
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Then, using the other transformation equation,                  , we can write, 

Since J is a constant with no q dependence, we can move the derivative 

wrt J outside of the q integral,

2

TT

W d Ww dq dq
J q dJ q
 

  
  

 
  

Wp
q





1
T

d dJw p dq
dJ dJ

   

(recall                         )J p dq 



Action-Angle Variables in 1dof
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This result means that w changes by unity as q goes through a complete 

period T.  Then, since we have                     , we can write

1w 

- gives the frequency of the periodic 

oscillation associated with q !

w vt  

( ) (0) 1w w T w vT    

   K J
v J

J





- and it can be directly evaluated thru

(*)

  1v J T

without finding the complete EOM



Action-Angle Variables in 1dof: Example
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Let consider a linear harmonic oscillator given by the Hamiltonian,

2
2 2

2 2
p mH q
m

   

Solving for p, we have, 

2 2 22p m m q  

Then, we can substitute this into the integral for the Action Variable, 

2 2 22
T

J m m q dq  

is the const total E

is the natural freq


k m

Motion is periodic in q



Action-Angle Variables in 1dof: Example

49

Using the following coordinate change,

2

2 sinq
m
 




The integrand can be simplified,

 22
22

2 22 2 2s c2 22 i sn odqqm m
m

m m d
m
  


    


 

 


 


   2
2 c2 1 sin 2 os dm

m
  


  

 2 2
2

2 22 cos cos cosm d d
m
      
 

 



Action-Angle Variables in 1dof: Example
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Putting this back into our integral for the Action Variable, we have,

This gives,

2
2

0

2 cosJ d
  


 

2J 




Inverting to solve for       in terms of J, we have,

2
JH K 


  



Action-Angle Variables in 1dof: Example
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Finally, applying our result for      using Eq. (*), we have

Thus,

2 2
K Jv
J J

 
 

         

1
2 2

kv
m


 

 

v

Here, we have derived the frequency of the linear harmonic oscillator by only 

calculating the Action Variable without explicitly solving for the EOM !


