Legendre Transform

Let consider the simple case with just a real value function: \(F(x) \)

\(F(x) \) expresses a relationship between an independent variable \(x \) and its dependent value \(F \)

\(\Rightarrow \) This relation is encoded in the functional form of \(F(x) \)

\(\Rightarrow \) We will denote this encoding in general by: \(\{F, x\} \)

As one has learned in math and physics, it is sometime useful to encode the information contained in a function in different ways...

\(\vdots \)

\(\Rightarrow \) e.g., Fourier Transform, Laplace Transform, etc.
Legendre Transform

As in the Fourier Transform:
\[\hat{F}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ikx} F(x) \, dx \]

and its inverse transform:
\[F(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{+ikx} \hat{F}(k) \, dk \]

→ The original information of \(F(x) \) for a given \(x \) value is encoded in terms of the Fourier components \(\hat{F}(k) \) and a new set of variables \(k \).

→ In our new encoding scheme, we will say that
\[\{\hat{F}, k\} \text{ encodes the SAME information as } \{F, x\} \]
Legendre Transform

The Legendre Transform is yet another (convenient) encoding scheme for \(F(x) \) when the following two conditions are true:

1. The function is strictly convex (concave), i.e., 2\(^{nd}\) derivative always positive (negative) and smooth

2. It is easier to measure, control, or think about \(\frac{dF}{dx} \) than \(x \) itself

\(\rightarrow \) Since \(\frac{dF}{dx} \) never changes sign (condition 1), there is a one-to-one correspondence between \(\frac{dF}{dx} \) and \(x \)

\(\rightarrow \) Legendre Transform gives us a new encoding scheme \(\{G, s\} \) with \(G(s) \) being a function of \(s = \frac{dF}{dx} \) instead of \(x \)
Legendre Transform

Here is the definition of the Legendre Transform for \(F(x) \)

\[
G(s) = sx(s) - F(x(s))
\]

Note that \(G(s) \) is a function of \(s \) and we have to express \(F(x(s)) \) in terms of \(s \) by inverting the function: \(s = \frac{dF(x)}{dx} \) to get \(x(s) \)
Legendre Transform

Geometric Construction of the Legendre Transform: \(G = sx - F \)

![Image showing the geometric construction of the Legendre Transform. The graph illustrates the relationship between the functions \(F(x) \) and \(G \), with \(F(x) \) being translated by the slope \(s \) to obtain \(G \). The y-intercept of the slope \(s \) is shown, and the equation \(F + G = sx \) is indicated.]
Legendre Transform

Important Properties of the Legendre Transform:

1. The Legendre Transform is its own inverse transform:

 - Suppose we have \(G(s) \) and define \(y(s) = \frac{dG(s)}{ds} \)

 - Using the inverted relation \(s(y) \), the Legendre Transform of \(G(s) \) is

 \[H(y) = y_s(y) - G(s(y)) \]

 - This can be rewritten as \(G = sy - H \) and comparing to our original transform \(G = sx - F \), we can immediate see that \(\{H, y\} = \{F, x\} \)

 and \(F = xs - G \) is \(F \)'s own inverse transform.
Legendre Transform

- The two independent variables \((x, s)\) are two *conjugate* pair of variables related to each other through

\[
x(s) = \frac{dG(s)}{ds} \quad \text{or} \quad s(x) = \frac{dF(x)}{dx}
\]

- Note that there is only ONE independent variable (either \(x\) or \(s\)) in:

\[
F(x) + G(s(x)) = s(x)x
\]

\[
F(x(s)) + G(s) = sx(s)
\]
Legendre Transform

2. Properties of the Minima [note: \(F(x) \) is convex, an extrema is a minimum]

At the minimum \(F_{\text{min}} \) of \(F(x) \) we have the slope

\[
s = \frac{dF}{dx} = 0
\]

So, we have

\[
G(s = 0) = x \cdot 0 - F_{\text{min}}
\]

\[
F_{\text{min}} = -G(0)
\]
Legendre Transform

2. Properties of the Minima

Similarly, at a minimum \(G_{\min} \) of \(G(s) \)
We again have correspondingly

\[
\frac{dG}{ds} (\text{slope for } G) \equiv x = 0
\]

So, we have

\[
G_{\min} = -F(0)
\]
Legendre Transform

2. Reciprocal Relation of F & G’s curvature

Start with the two reciprocal definitions

$$x(s) = \frac{dG(s)}{ds} \quad \text{and} \quad s(x) = \frac{dF(x)}{dx}$$

Now take derivatives with respect to their independent variables,

$$\frac{dx}{ds} = \frac{d^2G(s)}{ds^2} \quad \otimes \quad \frac{ds}{dx} = \frac{d^2F(x)}{dx^2}$$

$$\left(\frac{d^2F(x)}{dx^2}\right)\left(\frac{d^2G(s)}{ds^2}\right) = \frac{ds}{dx} \frac{dx}{ds} = 1$$

So, if $F(x)$ is with curvature α, then $G(s)$ will have curvature $1/\alpha$
Review of Lagrangian Formulation

Recall Lagrangian Formulation of Mechanics

- Pick \(n \) proper (independent) generalized coordinates to describe the state of the system \(\rightarrow \) this defines a \(n \)-dim Configuration Space.

- Apply the Hamilton’s Principle:

The motion of the system from \(t_1 \) to \(t_2 \) in config. space is such that the Action \((I) \) has a stationary value, i.e.,

\[
\delta I = \delta \int_{1}^{2} L(q_j, \dot{q}_j, t) \, dt = 0
\]

- Using Variational Calculus, this implies the Euler-Lagrange Eq:

\[
\frac{\partial L}{\partial q_j} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_j} \right) = 0, \quad j = 1, \ldots, n
\]
Review of Lagrangian Formulation

\[\frac{\partial L}{\partial q_j} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_j} \right) = 0, \quad j = 1, \ldots, n \]

→ Solving this gives the Equations of Motion

Notes:

- We have \(n \) independent generalized coordinates \(\{q_j\}_1^n \).
- The \(n \) \(\{\dot{q}_j\}_1^n \) are time derivatives of the \(\{q_j\}_1^n \).
- We have \(n \) 2nd-order ODEs for the equations of motion
- We need \(2n \) initial conditions to completely specify the motion.
Hamiltonian Formulation

- Instead of n 2nd-order ODEs as EOM with n independent generalized coordinates in configuration space.
- Seek $2n$ 1st-order ODEs as EOM with $2n$ independent generalized coordinates in phase space.

(Note: In Hamiltonian Formulation, we need to start with a set of independent generalized coordinates. If they are not proper, a reduced set of $m < n$ proper coordinates must be chosen first.)

- The most natural choice for this set of $2n$ variables in phase space is:

\[
\left\{ q_j \right\}_1^n \oplus \left\{ p_j \right\}_1^n \quad \text{where} \quad p_j \equiv \frac{\partial L}{\partial \dot{q}_j}
\]

generalized coordinates \hspace{1cm} \text{generalized conjugate momenta}
Hamiltonian Formulation

Notes:

- As we will see... this is NOT the only choice

- Coordinates in this $2n$-dim phase space are call “canonical variables”

(In Landau & Lifshitz: they are called “canonical” since the EOM resulted from them has the simplicity and symmetry in form.)

- Later, we will investigate invariant ways to transform the system to other $2n$ canonical variables using “canonical transformations”
Configuration Space vs. Phase Space

1. A given point in configuration space \((q_1, \cdots, q_n) \) prescribes fully the “configuration” of the system at a given time \(t \).

- However, the specification of a point in this space does NOT specify the time evolution of the system completely!

 (a unique soln for a \(n \)-dim 2\(^{nd} \) order ODE needs \(2n \) ICs)

- Many different paths can go thru a given point in config space

\[\begin{align*}
\dot{q}_j &
\end{align*} \]

\[\begin{align*}
\text{Different paths crossing } P \text{ will have the same set of } \{q_j\}_1^n \text{ but diff } \{\dot{q}_j\}_1^n
\end{align*} \]
Configuration Space vs. Phase Space

To specify the state AND time evolution of a system uniquely at a given time, one needs to specify BOTH \(\{q_j\} \) AND \(\{\dot{q}_j\} \) or equivalently, \(\{q_j, p_j\} \).

\[\Rightarrow \text{The 2n-dim space where both } \{q_j\} \text{ and } \{p_j\} \text{ are independent variables is called phase space.} \]

\[\Rightarrow \text{Thru any given point in phase space, there can only be ONE unique path!} \]
Hamiltonian Formulation

- Instead of using the Lagrangian, \(L = L(q_j, \dot{q}_j, t) \), we will introduce a new function that depends on \(q_j, p_j \), and \(t \): \(H = H(q_j, p_j, t) \)

- This new function is call the Hamiltonian and it is defined by:

\[
H = \frac{\partial L}{\partial \dot{q}_j} \dot{q}_j - L
\]

(Einstein’s Convention: Repeated indices are summed)

- Plugging in the definition for the generalized momenta: \(p_j \equiv \frac{\partial L}{\partial \dot{q}_j} \)

\[
H = p_j \dot{q}_j - L
\]

(sum)

→ One can think of this as a coordinate transformation from \((q_j, \dot{q}_j)\) to \((q_j, p_j)\)

To be more specific, \(H(q, p) \) is the Legendre Transform of \(L(q, \dot{q}) \).
→ \(H \) is defined “similarly” to the Jacobi (energy) function \(h \) BUT \(h \) is a function of \((q_j, \dot{q}_j)\) and \(H \) is a function of \((q_j, p_j)\).
\(L \) and \(H \) are a Legendre Transform Pair

Consider a simple Lagrangian for a single particle \(m \) under the influence of a conservative potential \(V(q) \)

\[
L(q, \dot{q}) = \frac{m\dot{q}^2}{2} - V(q)
\]

Then, we have \(p \equiv \frac{\partial L}{\partial \dot{q}} = m\dot{q} \)

Inverting the above relation and arriving at \(\dot{q}(p) = p/m \)

Then, the Legendre Transform of \(L(q, \dot{q}) \) is: \(\{L, \dot{q}\} \Leftrightarrow \{H, p\} \)

\[
H(q, p) = p\dot{q}(p) - L(q, \dot{q}(p)) \quad \text{(} \dot{q} \text{ is an irrelevant variable in this L-Trans)}
\]

\[
= p\left(\frac{p}{m}\right) - \frac{m}{2}\left(\frac{p}{m}\right)^2 + V(q) = \frac{p^2}{2m} + V(q)
\]
Hamiltonian Formulation

- Taking the differential of our definition for \(H = p_j \dot{q}_j - L \), we have
 \[
dH = p_j d\dot{q}_j + \dot{q}_j dp_j - dL
 \]
 \(\text{(sum)} \)

- Now, we require that \(H = H(q_j, p_j, t) \) so that we should have
 \[
dH = \frac{\partial H}{\partial q_j} dq_j + \frac{\partial H}{\partial p_j} dp_j + \frac{\partial H}{\partial t} dt
 \]
 \(\text{(sum)} \)

- To be consistent, let try to resolve this by expanding \(dL \):
 \[
dL = \frac{\partial L}{\partial q_j} dq_j + \frac{\partial L}{\partial \dot{q}_j} d\dot{q}_j + \frac{\partial L}{\partial t} dt
 \]
 \(\text{(sum)} \)

- Plug in \(p_j = \frac{\partial L}{\partial \dot{q}_j} \):
 \[
dL = \frac{\partial L}{\partial q_j} dq_j + p_j d\dot{q}_j + \frac{\partial L}{\partial t} dt
 \]
 \(\text{(sum)} \)
Hamiltonian Formulation

- Now, since the system satisfies the Euler-Lagrange Equation, we have

\[
\frac{\partial L}{\partial q_j} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_j} \right) = \dot{p}_j
\]

(\text{** this is an important step if we want our formalism to describe the same dynamic.**})

- Substituting this into our previous equation, we have:

\[
dL = \dot{p}_j dq_j + p_j d\dot{q}_j + \frac{\partial L}{\partial t} dt
\]

\text{(sum)}

- Now, plug this into our equation for \(dH:\)

\[
dH = \dot{p}_j d\dot{q}_j + \dot{q}_j dp_j - \dot{p}_j dq_j - p_j d\dot{q}_j - \frac{\partial L}{\partial t} dt
\]

\[
dH = \dot{q}_j dp_j - \dot{p}_j dq_j - \frac{\partial L}{\partial t} dt
\]

\text{(sum)}
Hamiltonian Formulation

- If H describes the same dynamics as is given by the EL equation, the two expressions must equal to each other:

$$dH = -\dot{p}_j dq_j + \dot{q}_j dp_j - \frac{\partial L}{\partial t} dt$$

$$dH = \frac{\partial H}{\partial q_j} dq_j + \frac{\partial H}{\partial p_j} dp_j + \frac{\partial H}{\partial t} dt$$

- Comparing gives the condition:

$$\begin{align*}
\frac{\partial H}{\partial q_j} &= -\dot{p}_j \\
\frac{\partial H}{\partial p_j} &= \dot{q}_j
\end{align*}$$

\text{and}

$$\frac{\partial H}{\partial t} = -\frac{\partial L}{\partial t}$$

These are called the Hamilton’s Equations of Motion and they are the desired set of equations describing the EOM in phase space.
Hamiltonian Formulation

Summary of Steps:

1. Pick a proper set of q_j and form the Lagrangian L
2. Obtain the conjugate momenta by calculating $p_j \equiv \frac{\partial L}{\partial \dot{q}_j}$
3. Form $H = p_j \dot{q}_j - L$
4. Eliminate \dot{q}_j from H using the inverse of $p_j \equiv \frac{\partial L}{\partial \dot{q}_j}$ so as to have $H = H(q_j, p_j, t)$
5. Apply the Hamilton’s Equation of Motion:

$$\frac{\partial H}{\partial q_j} = -\dot{p}_j \quad \text{and} \quad \frac{\partial H}{\partial p_j} = \dot{q}_j$$

As you will see, this formulation does not necessary simplify practical calculations but it forms a theoretical bridge to QM and SM.
Hamilton Equations in Matrix (Symplectic) Notation

The pair of Hamilton equations look almost symmetric (except the “-” sign).

The following is an elegant way to write the Hamilton equations into a single matrix equation:

For a system with n dofs, we group all of our q_i’s and p_i’s into a $2n$-dim vector η:

$$\eta_j = q_j, \quad \eta_{j+n} = p_j; \quad j = 1, \cdots, n$$

Similarly, we will define another $2n$-dimensional column vector $\partial H / \partial \eta$:

$$\begin{bmatrix} \frac{\partial H}{\partial \eta_j} \\ \frac{\partial H}{\partial \eta_{j+n}} \end{bmatrix} = \begin{bmatrix} \frac{\partial H}{\partial q_j} \\ \frac{\partial H}{\partial p_j} \end{bmatrix}; \quad j = 1, \cdots, n$$
Hamilton Equations in Matrix (Symplectic) Notation

Now, we define a $2n \times 2n$ anti-symmetric matrix J,

$$
J = \begin{pmatrix}
0 & I \\
-I & 0
\end{pmatrix}
$$

where I is a $n \times n$ identity matrix

0 is a $n \times n$ zero matrix

Note that the transpose of J is its own inverse (orthogonal):

$$
J^T = \begin{pmatrix}
0 & -I \\
I & 0
\end{pmatrix}
$$

and

$$
J^T J = JJ^T = \begin{pmatrix}
I & 0 \\
0 & I
\end{pmatrix}
$$

In summary, we have the following properties for J:

$$
J^T = -J = J^{-1}, \quad J^2 = -I, \quad \det(J) = +1
$$
Hamilton Equations in Matrix (Symplectic) Notation

The Hamilton equation can then be written in a compact form:

\[
\dot{\eta} = J \frac{\partial H}{\partial \eta}
\]

As an example, with only 2 dofs, this matrix equation expands into:

\[
\begin{pmatrix}
\dot{q}_1 \\
\dot{q}_2 \\
\dot{p}_1 \\
\dot{p}_2
\end{pmatrix}
= \begin{pmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
\frac{\partial H}{\partial q_1} \\
\frac{\partial H}{\partial q_2} \\
\frac{\partial H}{\partial p_1} \\
\frac{\partial H}{\partial p_2}
\end{pmatrix}
= \begin{pmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
-\dot{p}_1 \\
-\dot{p}_2 \\
\dot{q}_1 \\
\dot{q}_2
\end{pmatrix}
\]

This is typically referred to as the matrix or symplectic notation for the Hamilton equations.
Example: Spherical Pendulum

- Pick Generalized Coordinates: θ, ϕ
- $ds = b d\theta \dot{\theta} + b \sin \theta \ d\phi \dot{\phi}$
- $v = \frac{ds}{dt} = b \dot{\theta} \dot{\theta} + b \sin \theta \dot{\phi} \dot{\phi}$

\[
T = \frac{1}{2} m v^2 = \frac{1}{2} mb^2 \dot{\theta}^2 + \frac{1}{2} mb^2 \sin^2 \theta \dot{\phi}^2 \quad U = -mgb \cos \theta
\]

Thus,

\[
L = T - U = \frac{1}{2} mb^2 \dot{\theta}^2 + \frac{1}{2} mb^2 \sin^2 \theta \dot{\phi}^2 + mgb \cos \theta
\]

E-L equations gives
\[
\begin{align*}
\ddot{\theta} - \dot{\phi}^2 \sin \theta \cos \theta + \frac{g}{b} \sin \theta &= 0 \\
\ddot{\phi} \sin^2 \theta + 2 \dot{\phi} \sin \theta \cos \theta &= 0
\end{align*}
\]
Example: Spherical Pendulum

Practically, we can do one integration immediately through the two constants of motion:

Conservation of E:

$$E = \frac{1}{2} mb^2 \dot{\theta}^2 + \frac{1}{2} mb^2 \sin^2 \theta \dot{\phi}^2 - mgb \cos \theta$$

ϕ is cyclic, i.e. $\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\phi}} \right) = 0$:

$$p_\phi = \frac{\partial L}{\partial \dot{\phi}} = mb^2 \sin^2 \theta \dot{\phi} = \text{const}$$

These two 1st – order ODEs can be solved easily by substitute $\dot{\phi}$ from the p_ϕ equation into the E equation.
Example: Spherical Pendulum

\[L = \frac{1}{2} m b^2 \dot{\theta}^2 + \frac{1}{2} m b^2 \sin^2 \theta \dot{\phi}^2 + m g b \cos \theta \]

Now, let consider the Hamiltonian Formalism.

We first need to calculate the conjugate momenta:

\[
\begin{align*}
 p_\theta &= \frac{\partial L}{\partial \dot{\theta}} = m b^2 \dot{\theta} \\
 p_\phi &= \frac{\partial L}{\partial \dot{\phi}} = m b^2 \sin^2 \theta \dot{\phi}
\end{align*}
\]

\[
\begin{align*}
 \dot{\theta} &= \frac{p_\theta}{m b^2} \\
 \dot{\phi} &= \frac{p_\phi}{m b^2 \sin^2 \theta}
\end{align*}
\]

The boxed equations are the desired transformation from the config. space to the canonical variables in *phase space*.
Example: Spherical Pendulum

Construct the Hamiltonian:

\[H = \dot{q}_j p_j - L \quad (sum) \]

\[= \dot{\theta} p_\theta + \dot{\phi} p_\phi - L \]

\[= \frac{p_\theta^2}{mb^2} + \frac{p_\phi^2}{mb^2 \sin^2 \theta} - \frac{1}{2} mb^2 \dot{\theta}^2 - \frac{1}{2} mb^2 \sin^2 \theta \dot{\phi}^2 - mgb \cos \theta \]

\[= \frac{p_\theta^2}{mb^2} + \frac{p_\phi^2}{mb^2 \sin^2 \theta} - \frac{p_\theta^2}{2mb^2} - \frac{p_\phi^2}{2mb^2 \sin^2 \theta} - mgb \cos \theta \]

\[H = \frac{p_\theta^2}{2mb^2} + \frac{p_\phi^2}{2mb^2 \sin^2 \theta} - mgb \cos \theta \]

(H is properly expressed in terms of the canonical variables \((\theta, \phi, p_\theta, p_\phi, t)\).)
Example: Spherical Pendulum

Apply Hamilton’s Equations to get four 1st - order ODEs:

\[
\frac{\partial H}{\partial \theta} = -\dot{p}_\theta \quad \Rightarrow \quad \frac{p_\phi^2}{2mb^2}(-2)\sin^{-3}\theta \cos \theta + mb \sin \theta = -\dot{p}_\theta
\]

\[
\dot{p}_\theta = \frac{p_\phi^2 \cos \theta}{mb^2 \sin^3 \theta} - mgb \sin \theta
\]

\[
\frac{\partial H}{\partial \phi} = -\dot{p}_\phi \quad \Rightarrow \quad \dot{p}_\phi = 0
\]

\[
\frac{\partial H}{\partial p_\theta} = \dot{\theta} \quad \Rightarrow \quad \dot{\theta} = \frac{p_\theta}{mb^2}
\]

\[
\frac{\partial H}{\partial p_\phi} = \dot{\phi} \quad \Rightarrow \quad \dot{\phi} = \frac{p_\phi}{mb^2 \sin^2 \theta}
\]

Since \(\phi \) is cyclic, \(P_\phi \) is a constant and \(\phi \) can be integrated to get \(\phi(t) \). We will exploit this later.

Just repeated what we had.
Symmetry and Conservation Theorem Again

- Consider the full-time derivative of H,

$$\frac{dH}{dt} = \frac{\partial H}{\partial q_j} \dot{q}_j + \frac{\partial H}{\partial p_j} \dot{p}_j + \frac{\partial H}{\partial t}$$

Using the Hamilton’s Equations:

$$\frac{dH}{dt} = \left(-\dot{p}_j\right)\dot{q}_j + \left(\dot{q}_j\right)p_j + \frac{\partial H}{\partial t}$$

$\Rightarrow \frac{dH}{dt} = \frac{\partial H}{\partial t}$

(soso if time does not explicitly appears in H
(time is cyclic), H is conserved!)

Note: $H = E$ if ...

1. U does not depend on the generalized velocities

2. Transformation defining q_j does not depend on t

explicitly.
Subtle Difference between h and H

Recall that the Jacobi integral h is a function of (q_j, \dot{q}_j, t) instead of (q_j, p_j, t)

$$h(q_j, \dot{q}_j, t) = \sum_j \dot{q}_j \frac{\partial L}{\partial \dot{q}_j} - L$$

$$\frac{\partial h}{\partial t} = \sum_j \dot{q}_j \frac{\partial}{\partial t} \left(\frac{\partial L}{\partial \dot{q}_j} \right) - \frac{\partial L}{\partial t}$$

Also, from the E-L Eq, we know that $-\frac{\partial L}{\partial t} = \frac{dh}{dt}$

Thus, we can rewrite the above equation as,

$$\frac{\partial h}{\partial t} = \sum_j \dot{q}_j \frac{\partial}{\partial t} \left(\frac{\partial L}{\partial \dot{q}_j} \right) + \frac{dh}{dt}$$

Thus, unless the red term is explicitly zero,

$$\frac{\partial h}{\partial t} = 0 \quad \Rightarrow \quad \frac{dh}{dt} = 0$$
Subtle Difference between h and H

Example: \[L = \frac{1}{2} m\dot{q}^2 + \alpha \dot{q} t - V(q) \]

\[\frac{\partial L}{\partial \dot{q}} = m\dot{q} + \alpha t \]

So,

\[h = \dot{q} \frac{\partial L}{\partial \dot{q}} - L \]

\[h = \dot{q}(m\dot{q} + \alpha t) - \left(\frac{1}{2} m\dot{q}^2 + \alpha \dot{q} t - V(q) \right) \]

\[= m\dot{q}^2 + \alpha \dot{q} q - \frac{1}{2} m\dot{q}^2 - \alpha \dot{q} t + V(q) \]

\[h = \frac{1}{2} m\dot{q}^2 + V(q) \]
Subtle Difference between h and H

$$L = \frac{1}{2} m\dot{q}^2 + \alpha \dot{q} t - V(q) \quad h = \frac{1}{2} m\dot{q}^2 + V(q)$$

So,

$$\frac{\partial L}{\partial t} = \alpha \dot{q} \neq 0 \quad \text{but} \quad \frac{\partial h}{\partial t} = 0$$

From our previous calculations, we have the following relationship,

$$\frac{\partial h}{\partial t} = \dot{q} \frac{\partial}{\partial t} \left(\frac{\partial L}{\partial \dot{q}} \right) + \frac{dh}{dt} = 0$$

So, the LHS is zero and we can also explicitly check that the RHS=0 too but with $\frac{dh}{dt} \neq 0$.

Subtle Difference between h and H

\[
\frac{\partial h}{\partial t} = \dot{q} \frac{\partial}{\partial t} \left(\frac{\partial L}{\partial \dot{q}} \right) + \frac{dh}{dt}
\]

\[
= \dot{q} \frac{\partial}{\partial t} (\alpha t + m\dot{q})
\]

\[
= \alpha \dot{q}
\]

\[
\frac{dh}{dt} = \frac{d}{dt} \left(\frac{1}{2} m\dot{q}^2 + V(q) \right)
\]

\[
= m\ddot{q} \dot{q} + \frac{\partial V}{\partial q} \dot{q}
\]

Thus, we have,

\[
\dot{q} \frac{\partial}{\partial t} \left(\frac{\partial L}{\partial \dot{q}} \right) + \frac{dh}{dt} = \dot{q} \left(m\ddot{q} + \alpha + \frac{\partial V}{\partial q} \right) = 0
\]

This has to be zero since \(\frac{\partial h}{\partial t} = 0 \) and indeed, it does. From EL Eq, we have

\[
\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) - \frac{\partial L}{\partial q} = 0
\]

\[
\Rightarrow \quad \frac{d}{dt} (\alpha t + m\dot{q}) + \frac{\partial V}{\partial q} = 0
\]

\[
\alpha + m\ddot{q} + \frac{\partial V}{\partial q} = 0
\]
Subtle Difference between h and H

$$L = \frac{1}{2}m\dot{q}^2 + \alpha \dot{q}t - V(q) \quad h = \frac{1}{2}m\dot{q}^2 + V(q)$$

So, for this specific example, we have

$$\frac{\partial h}{\partial t} = 0 \quad \text{but} \quad \frac{\partial L}{\partial t} \neq 0 \quad \text{and} \quad \frac{dh}{dt} \neq 0$$

$$= \alpha \dot{q} \neq 0 \quad \text{and} \quad = m\ddot{q} + \frac{\partial V}{\partial q} \dot{q} \neq 0$$

One can also calculate $H(q, p, t)$ using $p \equiv \frac{\partial L}{\partial \dot{q}} = \alpha t + m\dot{q}$

$$H = \frac{(p - \alpha t)^2}{2m} + V(q) \quad \rightarrow \quad \frac{\partial H}{\partial t} = \frac{dH}{dt} \neq 0$$
Symmetry and Conservation Theorem Again

- Other cyclic coordinates:

If \(q_n \) is cyclic, the Lagrangian is \(L = L(q_1, \cdots, q_{n-1}, \dot{q}_1, \cdots, \dot{q}_n, t) \)

The \(n \)-th EOM is then given by:

\[
\frac{\partial L}{\partial \dot{q}_n} = \text{const} \quad \text{(The LHS is usually a complicated function of } q_j \text{ & } \dot{q}_j \text{ and much efforts still needed to solve for } q_n(t).)
\]

In contrast, if \(q_n \) is cyclic in the Hamiltonian Formalism,

\[
\frac{\partial H}{\partial q_n} = 0 = -\dot{p}_n \quad \Rightarrow \quad p_n = \text{const} \quad \text{(conserved)}
\]

(This equation is immediately “solved” from IC \(\rightarrow p_n \) is gone from the prob.)

(The Hamiltonian Formalism has a much nicer structure for cyclic coords)
Routh’s Procedure

Goal: Transform only the cyclic coordinates to take advantage of simplicity in phase space for the cyclic variables

Let say we have: \(L = L(q_1, \ldots, q_s, \dot{q}_1, \ldots, \dot{q}_n, t) \) where \(q_{s+1}, \ldots, q_n \) are cyclic

Define the Routhian, \(R = \sum_{j=s+1}^{n} p_j \dot{q}_j - L \) similar to Hamiltonian

where \(R \) depends on \((q_1, \ldots, q_s, \dot{q}_1, \ldots, \dot{q}_s, p_{s+1}, \ldots, p_n, t) \)

Then, apply the EL equation to non-cyclic variables \((q_1, \ldots, q_s)\),

\[
\frac{d}{dt} \left(\frac{\partial R}{\partial \dot{q}_j} \right) - \frac{\partial R}{\partial q_j} = 0 \quad \text{for} \quad j = 1, \ldots, s
\]

And, apply the Hamilton’s equation to cyclic variables \((q_{s+1}, \ldots, q_n)\)

\[
\frac{\partial R}{\partial q_j} = -\dot{p}_j = 0 \quad \text{and} \quad \frac{\partial R}{\partial p_j} = \dot{q}_j \quad \text{for} \quad j = s + 1, \ldots, n
\]

\((p_j = \text{const})\)
Routh’s Procedure: example

A single particle in a central potential: \(V(r) = -\frac{k}{r^n} \)

From previous chapter, we have:
\[
L = \frac{m}{2} \dot{r}^2 + \frac{m}{2} r^2 \dot{\theta}^2 + \frac{k}{r^n}
\]

\(\theta \) is cyclic and \(r \) is not, so we define
\[
p_\theta = \frac{\partial L}{\partial \dot{\theta}} = mr^2 \dot{\theta} \quad \rightarrow \quad \dot{\theta} = \frac{p_\theta}{mr^2}
\]

The Routhian is:
\[
R = p_\theta \dot{q}_\theta - L
\]

\[
R = \frac{p_\theta^2}{mr^2} - \frac{m}{2} \dot{r}^2 - \frac{m}{2} r^2 \left(\frac{p_\theta}{mr^2} \right)^2 - \frac{k}{r^n} = \frac{p_\theta^2}{2mr^2} - \frac{m}{2} \dot{r}^2 - \frac{k}{r^n}
\]

Depends on \((r, \dot{r}, p_\theta)\) only as advertised
Routh’s Procedure: example

\[R = \frac{p_\theta^2}{2mr^2} - \frac{m}{2} \dot{r}^2 - \frac{k}{r^n} \]

Applying the EL equation to the non-cyclic variable \(r \) :

\[\frac{d}{dt} \left(\frac{\partial R}{\partial \dot{r}} \right) - \frac{\partial R}{\partial r} = 0 \quad \Rightarrow \quad -\frac{d}{dt} (\dot{m} \dot{r}) - \left[\frac{p_\theta^2}{2m} (-2) \frac{1}{r^3} - \frac{k}{r^{n+1}} (-n) \right] = 0 \]

\[m \ddot{r} - \frac{p_\theta^2}{mr^3} + \frac{nk}{r^{n+1}} = 0 \]

And, the Hamilton’s Equation for \(\theta \) :

\[\frac{\partial R}{\partial \dot{\theta}} = -\dot{p}_\theta = 0 \quad \frac{\partial R}{\partial p_\theta} = \dot{\theta} = \frac{p_\theta}{mr^2} \]

\[p_\theta = \text{const} = l \]

\[\dot{\theta} = \frac{l}{mr^2} \]
Cyclic Variables: Action-Angle Coordinates

- Note that a given system can be described by several different sets of generalized coordinates

 Generalized coordinates are not unique!

- Recall also that the # of cyclic variables can depend on the choice of the generalized coordinates

 e.g., in the previous central force problem:
 → Rect coord \((x, y)\): both \(x, y\) are not cyclic
 → polar coord \((r, \theta)\): \(\theta\) is cyclic
Cyclic Variables: Action-Angle Coordinates

- Although one might not be able to pick a set of generalized coordinates (from a given physical system) to have ALL q_j being cyclic,

 → one can imagine transforming them to an ideal set such that they are all cyclic.

 → **Canonical Transformation** (next Chapter)

- If possible, then,

 → all the conjugate momenta are constant: $p_j = \alpha_j = const$

 → additionally, if H is a constant of motion, then

\[
H = H(\alpha_1, \cdots, \alpha_n) \quad \text{cannot depend on } t \text { and } q_j \text{ explicitly!}
\]
Cyclic Variables: Action-Angle Coordinates

→ consequently, the EOM for the \(q_j \) are simple:

\[
\dot{q}_j = \frac{\partial H}{\partial p_j} = \frac{\partial H}{\partial \alpha_j} = \text{func of cons} \{\alpha_1, \ldots, \alpha_n\} \equiv \omega_j
\]

\[
q_j(t) = \omega_j t + \beta_j
\]

\(\beta_j \) are integration constants depending on IC

- Recall that the “natural” choice of the \(2n \)-dim phase space variables is with \(q_j \) being the regular generalized coordinates and \(p_j \) being their conjugate momenta.

→ BUT, this is NOT the only choice!

→ The Hamiltonian Formalism can be extended to other possibilities:

\[
Q_j = Q_j(q, p, t) \quad \text{and} \quad P_j = P_j(q, p, t)
\]

(indices for \(q_j, p_j \) are suppressed here)
Cyclic Variables: Action-Angle Coordinates

\[
Q_j = Q_j(q, p, t) \quad \text{and} \quad P_j = P_j(q, p, t)
\]

→ \((Q_j, P_j)\) are the “canonically” transformed variables from the original ones

→ \((Q_j, P_j)\) needs to satisfy the corresponding Hamilton’s Equations in the transformed coordinates.

→ There are no preference between the transformation above for \(Q_j \& P_j\)

The canonical transformation treats both \(Q_j \& P_j\) equally.

→ \(Q_j \& P_j\) are on the same theoretical footing in the Hamiltonian Formalism!

→ The Hamiltonian Formalism is the starting point in analyzing QM systems.
Connection to Statistical Mechanics

- The Hamilton’s Equations describe motion in **phase space**
- A point in phase space \((q_j, p_j)\) uniquely determines the state of the system AND its future evolution.
- Nearby points represent system states with similar but slightly different initial conditions.
- One can imagine a *cloud of points* bounded by a closed surface \(S\) with nearly identical initial conditions moving in time.
Connection to Statistical Mechanics

- Let say at time t, a small subset of these points crosses a differential area da on S in a given outward normal direction \hat{n} such that $da = da\hat{n}$

- Let $v = \left(\langle \dot{q}_j \rangle, \langle \dot{p}_j \rangle \right)$ be the mean “velocity” for points in da

- Then, after a given time dt, this small subset of points will trace out a differential volume in phase space given by

$$vdtda$$
Connection to Statistical Mechanics

- Summing up all points in the cloud bounded by S, we have,

$$
\frac{dV}{dt} = \left(\oint_S \mathbf{v} \cdot d\mathbf{a} \right) dt
$$

or,

$$
\frac{dV}{dt} = \oint_S \mathbf{v} \cdot d\mathbf{a}
$$

rate of change of “phase-space volume” due to the motion of the points

- Then, by Gauss’s Law, we have

$$
\frac{dV}{dt} = \oint_S \mathbf{v} \cdot d\mathbf{a} = \int_V (\nabla \cdot \mathbf{v}) dV
$$

V enclosed by S
Liouville’s Theorem

\[
\frac{dV}{dt} = \oint_S \mathbf{v} \cdot d\mathbf{a} = \int_V (\nabla \cdot \mathbf{v}) dV
\]

- In phase space, we have \(\mathbf{v} = (\dot{q}_1 \hat{q}_1 + \cdots + \dot{q}_n \hat{q}_n + \dot{p}_1 \hat{p}_1 + \cdots + \dot{p}_n \hat{p}_n) \)

- So that,

\[
\int_V (\nabla \cdot \mathbf{v}) dV = \int_V \sum_k \left(\frac{\partial \dot{q}_k}{\partial q_k} + \frac{\partial \dot{p}_k}{\partial p_k} \right) dV \quad (*)
\]

- Using the Hamilton’s Equations, we have:

\[
\frac{\partial \dot{q}_k}{\partial q_k} = \frac{\partial}{\partial q_k} \left(\frac{\partial H}{\partial p_k} \right) = \frac{\partial^2 H}{\partial q_k \partial p_k}
\]

\[
\frac{\partial \dot{p}_k}{\partial p_k} = \frac{\partial}{\partial p_k} \left(- \frac{\partial H}{\partial q_k} \right) = - \frac{\partial^2 H}{\partial p_k \partial q_k}
\]
Liouville’s Theorem

- Substituting into Eq (*), we have,

\[
\frac{dV}{dt} = \int \sum_{k} \left(\frac{\partial^2 H}{\partial q_k \partial p_k} - \frac{\partial^2 H}{\partial p_k \partial q_k} \right) dV
\]

\[(H \text{ is a smooth function}) \]

\[
\frac{dV}{dt} = 0!
\]

This is the Liouville’s Theorem: collection of phase-space points move as an incompressible fluid.

→ Phase space volume occupied by a set of points in phase space is constant in time.
Liouville’s Theorem

This is the starting point for statistical mechanics

- Imagine many \((N)\) identical mechanical systems but with different initial conditions (ensemble of systems).
- Each is a different point in phase space with \((q_j, p_j)\)
- Statistical properties can be specified by a “density of states” function per unit volume in phase space

\[
\rho(q_j, p_j, t) dV = \# \text{ system points in phase space volume } dV \text{ located at } (q_j, p_j) \text{ at time } t.
\]
Liouville’s Theorem

At statistical equilibrium,

→ The # of points in the ensemble \((N)\) does not change

→ Then, since \(N\) is fixed, \(V\) stays constant, \(\rho = N/V = \text{constant as well!}\)

Thus, Liouville’s Thm implies: density \(\rho\) in a neighborhood of any system state = const as the system evolves in phase space.

→ Thus, equilibrium \(\rho\) is uniform along the flow lines of the system points. (SM’s Master Eq. or Fokker-Planck Eq.)

→ This condition is typically used to solve for the equilibrium distribution \(\rho_{eq}\) for a statistical mechanical problem in phase space with which various statistical averages, \(P, T, U, S,...\) can be calculated.