PHYS 705: Classical Mechanics

Derivation of Lagrange Equations
from D’Alembert’s Principle




D’Alembert’s Principle

Using the D’Alembert’s Principle and requiring the virtual displacement to

be consistent with constraints, i.e, Z f -or, =0 (no virtual work for f;)

1

, : (@) _ 4 _
We can write down Newton’s 2" Law as, Z (Fi 7 —p, ) -or, =0
I

Again, since the coordinates r, (and the virtual variations) are not necessary

independent. This does not implies, (E(“) — pl) =0.

However, if we can change to a set of independent generalized coordinates

then, we can rewrite the set of equations as Z(?)]_ +0q; =0 and set

the independent coefficients (?)j =( inthe’sum individually to zero.



Derivation of Lagrange Equations

Break Z (Fl.(“) —P, ) - Or, = () into two pieces:

1. Y FE?.6r, (1)

1

Assume that we have a set of n=3N-K independent generalized coordinates

d; and the coordinate transformation,

I is the position vector in

r.=r.(q,.q9,,.q,t . :
i ’( P2 2 e ) Cartesian Coordinates

From chain rule, we have

or,
or, = Z—’ 0q . (note: or ot =0 since it is a virtual disp)
T aqj / ot

(Index convention: i goes over # particles and j over generalized coords)



Derivation of Lagrange Equations

This links the variations in r; to g;, substituting it into expression (1), we have,

ZF(a) 51. _ ZZ(F(CI) 5q1j Z|:2Fi(a) %:| 55[;
q;

J i J

Defining G ¢
0, = ZF,-( '.—L  asthe “generalized forces”

oq

J
We can then write,
D F”6r=3 069, (1)
i J
(Note: Q; needs not have the dimensions of force but QO ; o0q ; must have

dimensions of work.)
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Derivation of Lagrange Equations

Now, we look at the second piece involving p.:

2, sz -or, (2) (don’tforget the “-” sign in the original Eq)

l
= Z mfr, - or, (it is a virtual displacement so mass is constant)
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Derivation of Lagrange Equations

Let, go backward a bit. Consider the following time derivative:

d . or, , , Note: This is the term
dr| 5q ; i dt ﬁq ] "l aq] from previous page

Rearranging, the terrﬁ&m the previous p e) can be written as,

mi - or, _ d mv, on _mivi.i or; (2b)  where v, :ﬁ
0q; dt 0q, dt| oq,

Now, consider the blue and red terms in detail,



—————

Derivation of Lagrange Equations
I
blue term: ——
oq ;

Since we have r, =, (q1 G55 q t) , applying chain rule, we have

dr, or, . or
v=—oHA=) —Lg +—
dt T 0q, Ot

Taking the partial of above expression with respect to ¢ » we have

5\‘@. — or; (note: r; does not depend on g )
oq;, 0q, !
red term: [ or. o ( dr. OV,
E 8_’ = p dtl = a—’ (switching derivative order)
t\ dq, . .
9 9 4 Is it ok? Check ...



————

explicit check
=1 (q19Q29"'9qn9t)

' di\oq, ) 4og\ o, )" o o,
RHS. 0 (drij_ 0 oy ., o
" og,\dt) og \5oq " o

o (or ). & (arij [ 5
— qk+ note 5
k aq] \aqk) aq_] Ot

_Za”ari o
4 .Qk Py

8qj

Check! The two terms are the same.



Derivation of Lagrange Equations

. h k’ mr@—i m.v 2 —m.v i ﬁ
Putting these two terms back into Eq. (2b): Mo """ g, i g,

(reminder: i sums over # particles and j sums over generalized coords)



Derivation of Lagrange Equations

We are almost there but not quite done yet. Consider taking the g;derivative of

the Kinetic Energy,

oT
CAR PRSI
g, 0q,\ 52 oq, \ 52

i q;

Similarly, we can do the same manipulations on Twrt to ¢ Iz

oz g =Ty, 2

861 q,

J



B

Derivation of Lagrange Equations

Substituting these two expressions into Eq. (2¢), we have:
: d
2B =) — > my,- Zm 5%
i j dt \_ i q,;

d(or) or

- Z o0 - 5q]

—| dt L4,

Finally, reconstructing the two terms in the D’Alembert’s Principle, we have:

{Z(Ff‘” ~p;)-0, = 0}

i

2o-[5l&)&]



Derivation of Euler-Lagrange Equations

Now, since all the 0¢; are assumed to be independent variations, the

individual bracketed terms in the sum must vanish independently,

d| ol | oT
.| — Qj (3)
dt\ 04, ) 0q,

There are 3N-K of these differential equations for 3N-K g, and the solution of these
equations gives the equations of motion in terms of the generalized coords

without explicitly needing to know the constraint forces.

Also, note the advantage of this equation as a set of scalar equations (with 7T)

instead of the original 2" law which is a vector equation in terms of forces.



————

E-L Equation for Conservative Forces

Case 1: Fl.(“) derivable from a scalar potential

Fl.(“) =-V.U (rl, r, Iy, t) (note: U not depend on velocities)

or, or,
=>YF9. L __NVyy.——-
. Z aq, Z - 0q,

/
=-> 9 5+2 i+ﬁf( U-i[xii+yj+zif<]
ox, oy, 0z aq

1

_Z" 0U ox, U &y,  OU &7
T\ Ox; Oq;, Qy; Oq; 0Oz 0q,




B

E-L Equation for Conservative Forces

Putting this expression into the RHS of Eq. (3), we have,

dfor) or _, __ou
dt 8q'j/ qu_ I 0q;
d{or) o(T-U)
dt\oq, | oq,

Notice that since U does not depends on the generalized velocity ¢ iy we

are free to subtract U from T in the first term,

d (G(T—U)]_G(T—U)

dt aq oq .

J




E-L Equation for Conservative Forces

We now define the Lagrangian function L = T — U and the desired

Euler-Lagrange’s Equation is:
d| OL B oL 0
dt\ 0q, ) 0q;

Note: there is no unique choice of L which gives a particular set of

equations of motion. Given G(g, t) being a differentiable function of

the generalized coordinate, then

. . dG
L'(q,q,t) :L(q,q,t)+—

dt

is a different Lagrangian but will result in the same EOM.



E-L Equation for Velocity Dependent Potentials

Case 2: Uis velocity-dependent, i.e., U(q;,q;,?)

oU d|oU
In this case, we redefine the generalized force as, O, = — Py + dt| 0q
J J

d| oT oT
Now, substitute this 0 pinto —| — |-—= @) ., we then have,
dt\ 0q, ) 0q,

d(er)| or __au d(ou
dt\ g, | oq, oq, di|oq,




———

E-L Equation for Velocity Dependent Potentials

Combing terms using L = T — U, we again have the same Lagrange’s Equation,

d (8(T—U)]_8(T—U) o

dt 0q ; oq .

J

] A A
dt\ oq, | oq,

This is the case that applies to EM forces on moving charges g with velocity v,

U=gq (¢ —A- V) where ¢ is the scalar potential

1
And, L= 5 mv’ —q (¢ —-A- V) and A is the vector potential



————

E-L Equation for General Forces

Case 3 (General): Applied forces CANNOT be derived from a potential

One can still write down the Lagrange’s Equation in general as,
dfa) o _,
dt\ o4, ) oq,

- L contains the potential from conservative forces as before and

Here,

- Q;represents the forces not arising from a conservative potential



E-L Equation for Dissipative Forces

Example (dissipative friction):

F, = (—k v.,—k v —kzvz)

X x? y y?

For this case, one can define the Rayleigh’s dissipation function:

S= %Z(kxivx,.z + kyivyiz +kzivzi2)

1

Then, the friction force for the ith particle can be written as,

e ':( 03 _6\5 _ &sj:_vws

fi T ’
avxi avyi Zj




E-L Equation for Dissipative Forces

Plugging this into the component of the generalized force for the

force of friction, we can get,

or, 03

0-SF, F_. . B

’ I ’ aq] aqj

To see this, plug in our earlier relation : or, = 8\.71. , we have
q;, 04,

OV,
-N'F
QJ Z f:l aq’J

:Z_vvs.%:_a_.‘s
i l aq]' aqj



E-L Equation for Dissipative Forces

Then, the Lagrange’ Equation for the case with dissipation becomes,

d| OL oL 03

dt\ oOq ; oq ; oq ;
- Both scalar function L and 3 must be specified to get EOM.

- L will contain the potential derivable from all conservative forces as

previously.



————

Simple Applications of the Lagrangian Formulation

A particle moving under an applied force F in Cartesian Coordinates :

In 3D, r = (x, y, z) and there will be three diff eqs for the EOMs.

C . 1 : : :
The Lagrangian is given by, L =7 = Em (x2 + y2 + 22)

Then, the x-equation is given by,

d(@Lj_@L:F (Note: QxEZngI}:Ec)
L dt\ Ox Ox ’ : x
This gives,

d similarly for y & z




Simple Applications of the Lagrangian Formulation

Let redo the calculation in Cylindrical Coords with the same applied force F:

The coordinates are: r = (r, 6, z) z
|
From before, we have 1 = Em (x2 + 97+ 2 )
r y
P

Tranformation: (x,y,z)—(r,0,z)

x=rcosf) x=-rsin@6+rcosd 9

y=rsin@} — y=rcos@O+rsinb

z=2z ) z=7z

Expressing T in Cylindrical Coords:
T = 5y (r’0° sin” @ —2r7@sin @ cos 6 + 7 cos” O

+7°0° cos” @+ 2rr@cos@sin @+ 7 sin” O + z°)



Simple Applications of the Lagrangian Formulation

Combining and canceling like-color terms, we have
T=—(r2 +7°0° +22) (*)
2
It is constructive to consider the following alternative way to get to this expression,

Let try to express the speed in T in cylindrical coordinates,

Start with the position vector r,
r=rr+zz

Taking the time derivative,

dr ar .. . Note: the directional
V= 7 :rd TIrr+zz vectors F change in
! ! time as the particle
moves




————

Simple Applications of the Lagrangian Formulation

To examine on how these directional vectors changes, consider the following

infinitesimal change,

Notice that,
dr . A
R A — =00
r(f) dr =do60 dt
n —> n
dO =—-dor dﬂ_ 0f
—=—0r
dt
X
dr dr .. .. A A A
Backtothevvector, VZZII"Z-I-I’T-FZZ:I"QO-FI/T-FZZ

N2 .
So, v} =(rf) +72+2  and T:%vz =%(f2+r202+z'2)




Simple Applications of the Lagrangian Formulation

Now, let calculate the generalized force in cylindrical coordinates,

r:
or
O =F-— Since, I = 7T + zZ, we have @:f‘
or or
SO, Qr =F- f = E’
o 5 n
r - n
o=F = — - @ - r@ - r@ = 70 (recall previous page)
00 00 00 00
So,| O, =F- (7’ 6) =rF, (this looks like torque)
“ or

0 =F-—=F-2=F
0z




Simple Applications of the Lagrangian Formulation

The EOM is then given by: Recall, 7T = ﬂ(fz + 0% + Z'z)
2
r: d (8?)_8T =F - [mif'—mézr:Fr]
dt\ or or

d(or) or d/ 2n L dL
0: dt(ae)—ée—l’Fg —> E(mr 6)—7’F9 (this is E:N)

mr’@ +m2ri-Q = rF, %[m (ré + 2?9) =F, J

z: 4 a? —aTzFZ — i(mz‘)zFZ —>[mZ:FZ]
dt\ 0z ) 0Oz dt




)

Simple Applications of the Lagrangian Formulation

Putting the components of F together,
F=Fi+F,0+F.z
F=m (,'; — ézr)f' +m (r¢9 + 2#9)6 +mzZz  (*)
Is that the same F = mr that we have gotten previously in Cartesian Coords?
Check: Recall V=TF =r00+/F+7:7

¥ =ﬂ=i( 96+ff+z‘i)
dt dt

I = ri(96)+f96+f£+Ff+22
dt dt

—r 9@+€56 +ﬁ6’6+r’£+h‘+22
dt dt



Simple Applications of the Lagrangian Formulation
Using the directional vectors relations that we had earlier,
do .. df

——_0r, —=66
dt di

I = r(é’(—é’f‘) + éﬁ) +700 + f(é?ﬁ) + it + 77
Collecting all terms in the same direction,
I = (r — r@z)f + (ré+ 2#9)6 +Z17
So the EOM in (*) on the previous page is indeed F = myr , i.e.,

F= m[(r 0% )i+ (r+270)0 + zz] = mi



