
PHYS 705: Classical Mechanics
Derivation of Lagrange Equations 
from D’Alembert’s Principle
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We can write down Newton’s 2nd Law as,

D’Alembert’s Principle

Using the D’Alembert’s Principle and requiring the virtual displacement to 

be consistent with constraints, i.e, (no virtual work for fi)
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Again, since the coordinates     (and the virtual variations) are not necessary

independent.  This does not implies,                             . ( ) 0a
i i F p

However, if we can change to a set of independent generalized coordinates 

then, we can rewrite the set of equations as                                   and set 

the independent coefficients                    in the sum individually to zero. 
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Derivation of Lagrange Equations

 ( ) 0a
i i i

i

   F p rBreak                                            into two pieces: 

(Index convention: i goes over # particles and j over generalized coords)

1. ( ) (1)a
i i

i

F r

Assume that we have a set of n=3N-K independent generalized coordinates        

and the coordinate transformation,

 1 2, , , ,i i nq q q tr r 

From chain rule, we have
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is the position vector in 

Cartesian Coordinates
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Derivation of Lagrange Equations

( ) ( ) ( )a a ai i
i i i j i j

i i j ij j j

q q
q q

  
    

             
   r r

F r F F

This links the variations in ri to qj, substituting it into expression (1), we have,

(Note: Qj needs not have the dimensions of force but                must have 

dimensions of work.)

Defining
as the “generalized forces”
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We can then write,
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j jQ q
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Derivation of Lagrange Equations

(2)i i
i

p r

Now, we look at the second piece involving       : 
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(don’t forget the “-” sign in the original Eq)
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(it is a virtual displacement so mass is constant)
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Derivation of Lagrange Equations

Let, go backward a bit.  Consider the following time derivative:

i i i
i i i i i i

j j j

d d
m m m

dt q dt q q

     
               

r r r
r r r  

Rearranging, the term (from the previous page) can be written as,
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Now, consider the blue and red terms in detail,
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Note: This is the term 

from previous page



Derivation of Lagrange Equations

Since we have                                           , applying chain rule, we have

i

jq
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i i i
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dt q t
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blue term:

 1 2, , , ,i i nq q q tr r 

Taking the partial of above expression with respect to      , we havejq

j j
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red term:
i

j

d

dt q

 
   

r
(switching derivative order)

Is it ok?  Check …

(note: ri does not depend on      )
jq
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explicit check

i i i
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kj k j j

d
q

dt q q q t q

        
                    

r r r

Check!  The two terms are the same.
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RHS:
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Derivation of Lagrange Equations

Putting these two terms back into Eq. (2b):

With this, we finally have the following for expression (2):
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(reminder: i sums over # particles and j sums over generalized coords)
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Derivation of Lagrange Equations

We are almost there but not quite done yet.  Consider taking the qj derivative of 

the Kinetic Energy,

Similarly, we can do the same manipulations on T wrt to      ,
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Derivation of Lagrange Equations

Substituting these two expressions into Eq. (2c), we have:

Finally, reconstructing the two terms in the D’Alembert’s Principle, we have: 
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Derivation of Euler-Lagrange Equations

Now, since all the          are assumed to be independent variations, the 

individual bracketed terms in the sum must vanish independently,

There are 3N-K of these differential equations for 3N-K qj and the solution of these 

equations gives the equations of motion in terms of the generalized coords

without explicitly needing to know the constraint forces. 

(3)j
j j

d T T
Q

dt q q

  
     

jq

Also, note the advantage of this equation as a set of scalar equations  (with T) 

instead of the original 2nd law which is a vector equation in terms of forces.
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ˆ ˆ ˆ ˆˆ ˆ
i i i

i i i i j
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j
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x y z q

x y zU U U

x q y q z q

U
Q

q
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E-L Equation for Conservative Forces

Case 1:  

 ( )
1 2, , , ,a

i i NU t F r r r (note: U not depend on velocities)

derivable from a scalar potential( )a
iF
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E-L Equation for Conservative Forces

Notice that since U does not depends on the generalized velocity      , we 

are free to subtract U from T in the first term,

Putting this expression into the RHS of  Eq. (3), we have,
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E-L Equation for Conservative Forces

We now define the Lagrangian function L = T – U and the desired 

Euler-Lagrange’s Equation is:  

0
j j

d L L

dt q q

  
     

is a different Lagrangian but will result in the same EOM. 

   ' , , , ,
dG

L q q t L q q t
dt

  

Note: there is no unique choice of L which gives a particular set of 

equations of motion.  Given G(q, t) being a differentiable function of 

the generalized coordinate, then
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E-L Equation for Velocity Dependent Potentials

Case 2:  U is velocity-dependent, i.e.,  ( , , )j jU q q t

j
j j

U d U
Q

q dt q

  
       In this case, we redefine the generalized force as,  
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Now, substitute this        into                                          , we then have,j
j j

d T T
Q

dt q q

  
     jQ

j j j j

d T T U d U

dt q q q dt q

      
                



E-L Equation for Velocity Dependent Potentials

Combing terms using L = T – U, we again have the same Lagrange’s Equation,

0
j j

d L L

dt q q

  
     

This is the case that applies to EM forces on moving charges q with velocity v, 

 U q   A v where  is the scalar potential 

and A is the vector potential  And,  21

2
L mv q    A v
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E-L Equation for General Forces

Case 3 (General):  Applied forces CANNOT be derived from a potential

One can still write down the Lagrange’s Equation in general as,

Here,

- L contains the potential from conservative forces as before and

- Qj represents the forces not arising from a conservative potential

j
j j

d L L
Q

dt q q
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E-L Equation for Dissipative Forces

 , ,f x x y y z zk v k v k v   F

Example (dissipative friction): 

For this case, one can define the Rayleigh’s dissipation function: 

Then, the friction force for the ith particle can be written as, 

 2 2 21

2 i i i i i ix x y y z z
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E-L Equation for Dissipative Forces

Plugging this into the component of the generalized force for the 

force of friction, we can get,

To see this, plug in our earlier relation :                       , we have 

,
i

j f i
i j j

Q
q q
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E-L Equation for Dissipative Forces

j
j j j

d L L
Q

dt q q q

   
         

Then, the Lagrange’ Equation for the case  with dissipation becomes, 

- Both scalar function L and        must be specified to get EOM.

- L will contain the potential derivable from all conservative forces as 

previously.         
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Simple Applications of the Lagrangian Formulation

A particle moving under an applied force F in Cartesian Coordinates :

In 3D,  r = (x, y, z) and there will be three diff eqs for the EOMs.

Then, the x-equation is given by,

x

d L L
F

dt x x

       

The Lagrangian is given by,  2 2 21

2
L T m x y z     

This gives,

  0 x

d
mx F

dt
 

similarly for y & z

m r F

i
x i x

i

Q F
x


  

 r
F(Note:                                   ) 
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Simple Applications of the Lagrangian Formulation

Let redo the calculation in Cylindrical Coords with the same applied force F:

The coordinates are: r = (r, q, z)

From before, we have  2 2 21

2
T m x y z    

Expressing T in Cylindrical Coords:

   Tranformation: , , , ,x y z r zq

x
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Simple Applications of the Lagrangian Formulation

Combining and canceling like-color terms, we have

It is constructive to consider the following alternative way to get to this expression,

2 2 22( ) (*)
2

rT r
m

zq  

Let try to express the speed in T in cylindrical coordinates,

x

y

z

r
ˆzz

ˆrr

ˆ ˆr z r r z

Start with the position vector r,

Taking the time derivative,

ˆ
ˆ ˆ

d d
r r z

dt dt
   

r r
v r z 

Note: the directional 
vectors        change in 
time as the particle 
moves

ˆ  r
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Simple Applications of the Lagrangian Formulation

To examine on how these directional vectors changes, consider the following 

infinitesimal change,

ˆ ˆ
ˆˆ

ˆˆ ˆ ˆ

d
d d dt

dd d
dt

q
q

q q

  
    

r
θ

r θ

θθ r r





Back to the v vector,

Notice that,

ˆ ˆˆ ˆˆ ˆ
d d

r r z r r z
dt dt

q      
r r

v r z θ r z  

x

y ( ')tr

( )tr

't t dt dq
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ˆ 'r
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θ̂

ˆ 'θ

ˆdθ

So,  22 2 2v r r zq     and 2 2 2 2 2( )
2 2

m m
T v r r zq    
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Simple Applications of the Lagrangian Formulation

Now, let calculate the generalized force in cylindrical coordinates,

r:

Since,                       , we haverQ
r
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F ˆ ˆr z r r z ˆ
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So, ˆr rQ F  F r
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Qq q
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q q q
q

 
 


  

r θr
θ (recall previous page)

So,  ˆQ r rFq q  F θ (this looks like torque)

z:
ˆz zQ F
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r

F F z
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Simple Applications of the Lagrangian Formulation

The EOM is then given by:

2
r r

d T T
F mr m r F

dt r r
q          




q :

Recall,

(this is                 )

z :

r :

2 2 2 2( )
2

m
T r r zq   

 2d T T d
rF mr rF

dt dtq qq
q q

         



dL

N
dt



2 2mr m rr rFqq q    2m r r Fqq q  

 z z z

d T T d
F mz F mz F

dt z z dt
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Simple Applications of the Lagrangian Formulation

Putting the components of F together,

   2

ˆˆ ˆ

ˆˆ ˆ2 (*)

r zF F F

m r r m r r mz

q

q q q

  

    

F r θ z

F r θ z    

Is that the same                 that we have gotten previously in Cartesian Coords?mF r

Check:  Recall
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Simple Applications of the Lagrangian Formulation

Using the directional vectors relations that we had earlier,

   2 ˆˆ ˆ2m r r r r z mq q q       F r θ z r     

    ˆ ˆ ˆˆ ˆ ˆr r r r zq q q q q      θ θ θrr zr        

ˆ ˆ ˆˆ,
d d

dt dt
q q  

θ r
r θ 

   2 ˆˆ ˆ2r r r r zq q q    r r θ z     

So the EOM in (*) on the previous page is indeed                , i.e.,mF r

Collecting all terms in the same direction,
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