
CHAPTER 2 


LAGRANGIAN FORMULATION 
OF MECHANICS 

CHAPTER OVERVIEW 

Chapter 1 set the stage for the rest of the book: it reviewed Newton's equations and the 
basic concepts of Newton's formulation of mechanics. The discussion in that chapter 
was applied mostly to dynamical systems whose arena of motion is Euclidean three­
dimensional space, in which it is natural to use Cartesian coordinates. However, we 
referred on occasion to other situations, such as one-dimensional systems in which a 
particle is not free to move in Euclidean 3-space but only in a restricted region of it. 
Such a system is said to be constrained: its arena of motion, or, as we shall define 
below, its configuration man~fold, turns out in general to be neither Euclidean nor 
three dimensional (nor 3N-dimensional, if there are N particles involved). In such 
cases the equations of motion must include information about the forces that give rise 
to the constraints. 

In this chapter we show how the equations of motion can be rewritten in the 
appropriate configuration manifold in such a way that the constraints are taken into 
account from the outset. The result is the Lagrangian formulation of dynamics (the 
equations of motion are then called Lagrange's equations). We should emphasize that 
the physical content of Lagrange's equations is the same as that of Newton's. But 
in addition to being logically more appealing, Lagrange's formulation has several 
important advantages. 

Perhaps the first evident advantage is that the Lagrangian formulation is eas­
ier to apply to dynamical systems other than the simplest. Moreover, it brings out 
the connection between conservation laws and important symmetry properties of 
dynamical systems. Of great significance is that Lagrange's equations can be de­
rived from a variational principle, a method that turns out to be extremely gen­
eral and applicable in many branches of physics. One of the reasons for studying 
classical mechanics is to understand the Lagrangian formulation, for many equa­
tions of physics are conventionally formulated in Lagrangian terms and many 
conservation laws are understood also in Lagrangian terms, through their connec­
tion with symmetries. Some of the topics we mention here will be put off until 
Chapter 3. 
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CONSTRAINTS AND CONFIGURATION MANIFOLDS 

In this section we change from Cartesian coordinates to others, which are more useful 
for dealing with dynamical systems. The new coordinates are chosen in a way that depends 
on the particular dynamical system for which they will be used (but they are nevertheless 
called generalized coordinates); they are adapted to that system and are more or less natural 
coordinates for it. The properties of the system that determine the choice are geometric: 
they are the number of freedoms and the shape, or topology, of the region in which the 
system is free to move (e.g., whether it is a sphere or an inclined plane). This region 
is determined by the constraints placed upon the system; it is called the configuration 

manifold Q. The new coordinates, called the qU, will lie on Q, and their number will be the 

number of freedoms, which is also the dimension of Q. In this section we do two things: 
explain the idea of the configuration manifold and 2. describe the change from the 

Cartesian coordinates to the qU . 

2.1.1 CONSTRAIN1'S 

We start with an example. Think of a sphere rolling on a curved surface under the 
action of gravity. The sphere consists of many particles whose motion is correlated so 
that they always form a rigid sphere and so that there is always one of them in contact 
with the surface and, as the body is rolling, instantaneously at rest. The forces on the 

sphere are far from simple. They are composed of the forces internal to the sphere (which 
keep it rigid), the forces applied to it by the surface on which it is rolling (which keep 
it in contact with that surface and prevent it from sliding), and the force of gravity. The 
force of gravity is known a priori, but the "others, the constraining forces, are not. What 
is known is that under the action of gravity and the forces of constraint the body remains 
on the surface and continues to roll. It might seem that to describe the motion completely 
one would have to find the constraining forces, but it will be shown that the opposite 
is true, that the motion can be obtained from the gravitational force and from knowing 
the geometric constraints (i.e., of the shape of the surface and of the fact of rigidity); 
the forces of constraint, if needed, are easier to find later, This seemingly simple example 
of a sphere rolling on a curved surface is actually quite complicated. Most of the time we 
will be dealing with much simpler constraints. We now proceed to generalize this example. 

CONSTRAINT EQUATIONS 
The motion of a dynamical system is often constrained by external agents applying 

forces that are initially unknown. What is known is the geometric effect of such agents, 
or rather their effect combined with those applied forces that are known. Suppose one 
is dealing with a system of N particles and that the constraints are given by a set of K 
constraint equations of the form 

!I(Xj ..... Xs. t) = O. 1= l. .... K < 3N• (2.1) 
.',', 
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where the Xi are the position vectors of the N particles. The II are assumed to be differen­
tiable functions of their arguments, and the t dependence describes the known way in which 
the constraints vary with time, independent of the motion of the particles (for instance, in' 
the example of the rolling sphere with which we started this chapter, the surface on which 
it is rolling could be waving). 

Constraints given by equations like (2.1) are called holonomic (meaning essentially 
integrable, from the Greek). More general constraints depend also on the velocities (rolling 
constraints are among them); they are given by equations of the form 

There exist constraints that appear to be velocity dependent but are actually differential 
equations that can be integrated to give simply holonomic constraints. When this is not 
the case, velocity-dependent constraints are nonholonomic. In any case, it should be clear 
that hofonomic constraints are a speciaf case of this more generaf type. FinaIIy, there are 
other types of constraints entirely that are not even given by equations, for example, those 
given hy expressions of the form 

II(Xl, ... ,XN,t) <0, I=I, ... ,K<3N, 	 (2.3) 

as in the case of particles restricted to a certain region of space. An example is a particle 
constrained to remain within a container of some given shape. Although this kind of 
constraint will be mentioned on occasion in the book, it will not be treated in any generality. 
In this chapter we will deal only with holonomic constraints. 

CONSTRAINTS AND WORK 
How one deals with constraints can be illustrated (Fig. 2.1) by the relatively simple 

example of a point particle in 3-space restricted to a surface whose equation is 

f(x, t) = O. 	 (2.4) 

In this example N = 1 (a single particle) and K = 1 (a single constraint equation). The 
Newtonian equation of motion of the particle is 

mx=F+C, 	 (2.5) 

:.:11' 

~: 	

where F(x, X, t) is the known external force and C is the unknown force of constraint 
that the surface exerts on the particle. We now have four equations, namely (2.4) and the 
three components of (2.5), for six unknown functions of the time, the three components 
of X and the three components of C. Clearly this is not enough to determine the motion 
The problem arises from the physical fact that there are manypossi~~~~aint forces C 
that will keep, tll~_particle on the surface [i.e., will lead to motions tQ.~atisAc (24):1. F· 
example, suppose that the surface is a stationary plane and that a constraintlorce C h. 
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" A particle in 3-space constrained to a two-dimensional surface given by an equation of the form 
f(x, t) O.~ 

: relatively simple been found that will keep the particle on the plane. Now add to C another force that is 

alion is parallel to the plane (friction is an example of such a force) and call the sum C'. It is clear 

then that C' will also keep the particle on the plane but accelerating at some different rate, 

• (2.4) for the only difference between the two is a force along the plane. For a curved surface the 

argument is similar: to a constraining force C can be added a force that at each point is 

III equation). The 	 parallel to the surface, and the resulting force will still constrain the particle to the surface. 

What is needed here is some physical input that will allow us to choose among the different 

possibilities for C. 
(2.5) 	 This input will be obtained by what seems at first an arbitrary choice (as will be ~ seen later, what this does physically is to place restrictioI1s.J)U tht<.. work done by the • orce of constraint constraint forces): the forces"parallet to the surface will be eliminated by choosing C to 


rnely (2.4) and the ·ti{tpeij)eruiicular (normal) to the surface. The way to obtain a vector perpendicular to a 


three components surface is the following: 


:rmine the motion. Let I(x, t) = const. be the equation of any surface; then V I(x, t) is a vector per­


c<?nstr.l);!!\t forces C pendicular to the surface at position x and time t, provided that VI i= 0 on the surface. 


~~atisf~jlAU. For If VlOon the surface, of course, the procedure we are outlining here will not work. 


nstraint force C has To avoid this difficulty, we shall require that the constraint has been written in such a 
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v f ¥= 0 on the f = 0 surface. (2.6 

For example, the two equations fAx) = s . x = 0 and fb(X) = (s· x? =0 constrain ;: 

particle to the same plane, but on that plane V fa = s, while V fb = 0, so only fa = ( 
is acceptable. (If K > 1 and N > 1, the requirement is that the matrix of the ofdaxCl be 

at least of rank K; see the book's appendix for the definition of rank. The x" are the 3,\ 

components of N position vectors of the particles.)' 

The constraint force perpendicular or normal to the surface (often called a norma.' 
force and written N in place of C, but we will stick with C) can therefore be written 

c = 'AV f(x, t), (2.7) 

where). can be any number, in particular a funG.tion of t. This removes the mathematical 
difficulty, because now the four equations involve only four unknown functions, namel:­

A(t) and the three components of x(t). But the physical implications of this assumption 

have yet to be understood, so we now tum aside in order to understand them. 
Assume that the external force depends on a potential: F = -VV(x, t). Then ex­

pressing C through (2.7) and taking the dot product with x on both sides of (2.5) lead~ 

to 

mx·x == !!:......(~m;e) = -VV ·x+'AVf ·x. (2.8)
dt 2 

Now suppose that x(t) is a solution of the equations of motion. Then since the particle 

remains on the surface, f(x(t), t) = 0, and therefore dfldt = O. But 

df . af
-=Vf·x+­
dt at ' 

and similarly 

dV av
-=vv·x+-. 
dt at 

From these equations and (2.8) it follows that 

dE =!!:...... [~mi2+ v] = av -). af. (2.9)
dt dt 2 at at 

This means that the total energy E of the particle changes if V or f are explicit functions 

of the time (i.e., if the potential depends on the time or if the constraint surface is moving). 

We will not deal at this point with time-dependent potential energy functions, and therefore 

if (but not only it) the surface moves, the total energy changes. 
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The relation between movement of the surface and energy change can be understood 
physically. If the energy is changing, that is, if dEfdt =j:. 0, the work-energy theorem 
[Eq. (1.39)] implies that there is work being done on the system; as we are assuming 
that av fat = 0, Eq. (2.9) implies that the work is performed by the surface. To see 
how the surface does this work, suppose first that it is not moving. Since C is normal to 
the surface, it is always perpendicular to the velocity X, and thus C . x = 0: the rate at 
which work is done by the constraint force is zero. If the surface moves, however, the 
particle velocity need not be tangent to the surface, as shown in Fig. 2.2, and even if C 
is perpendicular to the surface C . x =j:. 0: the surface through C can do work at a non­
zero rate. 

, 


FIGURE 2.2 
A two-dimensional constraint surface that depends on time. Although the constraint force C is always 
nonnal to the surface, the angle between C and the particle's velocity vector x is not a right angle. 
Therefore the constraint force can do work on the particle. 

l 
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The physical content of Eq. (2.7), Le., the assumption that C is nonnal to the surface 
should now be clear: it is that the forces of constraint do no work. On the other hand. l~ 

reality, most surfaces exert forces which have tangential components such as friction an-.: 
therefore do work. Thus for the time being we are excluding frictional forces. But thert 

can be other constraint forces, nondissipative ones, that have components parallel to the 

surface of constraint yet do no work (they need only be perpendicular to the velocity, liL 
magnetic forces on charged particles). We are excluding those also. When those condition· 
are satisfied, the surface is called smooth. 

2.1.2 GENERALIZED COORDINATES 

We now return to the equations of motion for a single particle constrained to a surface' 

mi=F+AVj. (2.10 

j(x, t) (2.11 ) 

These are solved by first eliminating A(t). Since A V j is perpendicular to the surface, one 
can eliminate A by taking only those components of (2.10) that are tangent to it. For thi' 
purpose let 'T be an arbitrary vector tangent to the surface at x at time t, that is, a vector 
restricted only by the condition that 'T . V j = 0 (recall that V j ::j:. 0 on the constraint 
surface). Then the dot product of (2.10) with 'T yields 

(mi - F) . 'T = O. (2.12) 

This equation says only that mi - F is perpendicular to the surface at x at time t. Such a 
tangent vector 'T is now found at each point x of the surface and at all times t (that is, 'T is 
a vector function of x and of t); thus we obtain a 'T-dependent equation for mi - F. Since 
'T is an arbitrary vector tangent to the surface, there are two linearly independent vectors at 
each point x and hence two linearly independent vector functions ofx and t. Therefore this 
procedure yields not one but two equations for mi - F. But three equations are needed if 
one wants to find the vector function x(t). The third equation that is available is Eq. (2.11). 
The result is essentially a set of second-order differential equations for the components 
of x(t). If one wants to know the force C of constraint, one can solve for x(t) and return 
to (2.5). 

So far we have found how to write the equations of motion for a single particle with 
a single holonomic constraint. We now generalize to a system of N particles with K 
independent holonomic constraints. Because we will often be using double indices with­
out summing and because triple indices will sometimes occur, we drop the summation 
convention for a while. The analog of Eq. (2.5), the equation of motion of the ith particle, 
is (no sum on i) 

(2.13) 

and the constraints are given by (2.1). As before, the constraints fail to detennine the 
C i completely, and we add the assumption of smoothness by writing the an~~g 
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of (2.7), namely 

K 

Ci = .I.>.[Vdl, (2.14) 
1=1 

where Vi is the gradient with respect to the position vector Xi of the ith particle and the 
).,At) are K functions, which are as yet unknown. Like Ain the one-particle case, the AT 
will be eliminated in solving the problem. We leave to the reader (see Problem 1) the task 
ofproving that, in analogy with the one-particle case, if the potential V satisfies aV / at = 0 
the total change in energy is given by 

dE = _.'" A/ alI (2.15)
dt atLr 

so that the forces of constraint do work only if the constraint functions depend on t. 
Now let the T I be N arbitrary vectors "tangent to the surface," that is, vectors restricted 

only by the condition that 

L
N 

TI . VdT = 0, 1= 1, ... , K. (2.16) 
i=1 

If, as required in the discussion around Eq. (2.6), the matrix of the ajT / ax" is of rank K, 
this equation gives K independent relations among the 3N components of the N vectors 
T i, so that only 3 N - K of the components are independent. Then the dot product of (2.13) 
with Tj, summed over i, yields [use (2.14) and (2.16)] 

L(mtXi - Fi )· Ti = O. (2.17) 

This equation, the analog of (2.12), is sometimes called D'Alembert's principle. Through 
it, the 3N - K independent components of the Ti lead to 3N K independent relations. 
Equations (2.1) provide K other relations, so that there are 3N in all from which the 3N 

components of the XI can be obtained. 
The problem now is to find a suitable algorithm for picking vectors T I that satisfy (2.16). 

We will do this by sharpening the analogy to the one-particle case. In the one-particle case 
T was an arbitrary vector tangent to the surface of constraint. In the N -particle case there 
is no surface of constraint, so the Ti are not readily visualized. But Eq. (2.1) defines a 
(3N - K)-dimensional hypersurface in the 3N-dimensional Euclidean space of the 
components of the Xi, and the dynamical system is constrained to thishypersurface. That 
is, as the system moves and the Xi keep changing, the point in 3N-space described by the 
collection of all the components of the Xj remains always on this hypersurface. We could 
therefore call it the configuration hypersurface of the dynamical system, but for reasons 
that will be explained in Section 2.4; we will call it its configuration manifold Q. Start with 
N tangent vectors Tj that satisfy (2.16). Their 3N components define a (3N-component) 
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~ 'Ii 
vector in ]E3N that is a kind of generalized tangent vector to the configuration manifold, for 
in Eq. (2.16) the sum is not only over i, as indicated by the summation sign, but also over 
the three components of each T i, as indicated by the dot product. Thus just as T . V' f = 0 
defines a 3-vector tangent to the f = 0 surface, Eq. (2.16) defines a 3N-vector tangent to 
the !I = 0 hypersurface <Ql (see Problem 2). 

In these terms picking the Ti to satisfy (2.16) means picking the generalized tangent 
vector in 3N dimensions. This vector will be found in several steps. The first will be to 
define what are called generalized coordinat.es q" in the 3N-space (superscripts rather 
than subscripts are generally used for these coordinates) for which <Ql is a coordinate 
hypersurface. Consider a region of ]E3N that contains a point Xi of <Ql, and let q", ex = 
1, ... , 3 N, be new coordinates in that region, a set of invertible functions of the Xi: 

q" = q"(xJ, ... , XN, t), 
(2.18) 

Xi = x,(ql, ... , q3N, t) 

for XI in that region. Equations (2.18) define a transformation between the Xi and the q". 

Invertibility means that the Jacobian of the transformation is nonsingular. (The Jacobian 
of the transformation is the matrix whose elements are the 8q" / 8x i3 , where the xfJ are the 
3 N components of the N vectors Xi') 

Assume further that the q" are continuous and, because accelerations will lead to 
second derivatives, twice continuously differentiable functions. The first object will be to 
pick the q" so that the equations of constraint become trivial (i.e., reduce to the statement 
that some of the q" are constant). Then if the equations of motion are written in terms 
of the q" (invertibility guarantees that they can be), those q" that are constant will drop 
out. This is done by choosing the q" so that K of them (we choose the last K) depend 
on the Xi through the functions appearing in the constraint equations. Suppressing any t 
dependence, we write 

(2.19) 

where X stands for the collection of the Xi and n = 3N - K is the dimension of the 
configuration manifold <Ql; n is also the number of freedoms. Equations (2.19) are the last K 
of the 3N equations that give the qCl in terms of the Xi, and as such they too must be invertible, 
which means that it must be possible to solve them for the fl = !I (qn+l , ... ,qn+K). When 
the constraint conditions are imposed, they force the last K of the qct to be constants 
independent of the time: 

qn+l = R(O, ... , 0). 	 (2.20) 

This is what we mean by the constraint equations becoming trivial in these coordinates. 
Since the last K of the q" remain fixed as the motion proceeds, the problem reduces to 
finding how the rest of the q", the first n, depend on the time. 

The full set of q" can be used as well as the Xi to define a point in ]E3N. That is what 

··1II 
is meant by invertibility. Equation (2.20) restricts the point to lie in <Ql: it makes th~.same 
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,tatement as does (2.18) but in terms of different coordinates. As the first n of the q<tation manifold, for 
\ary in time, the point described by the full set moves about in , but it remains on the sign, but also over 
.:onfiguration manifold, and therefore the first n of the q<t form a coordinate system on Q.just as T • V f = 0 
The first n of the qC1 are called generalized coordinates of the dynamical system. Hence V-vector tangent to 
when the equations of motion are written in terms of the generalized coordinates, they will 
describe the way the system moves within the configuration manifold. ~eneralized tangent 

From now on, Greek indices run from 1 to n = 3N - K, rather than from 1 to 3 N.The first will be to 
superscripts rather 
Ql is a coordinate 2.1.3 EXAMPLES OF CONFIGURATION MANIFOLDS 

~, and let q<t, a 
In this subsection we give examples of configuration manifolds and generalized co­Ins of the XI: 

ordinates for some particular dynamical systems. In these examples and in most of what 
follows, Greek indices will run from 1 to n. 

(2.18) 

THE FINITE LINE 
I the Xi and the q<t . The finite line, which may be curved, applies to the motion of a bead along a wire of 
Jar. (The Jacobian length 1 (Fig. 2.3a). In this case N = 1 and K = 2 (see Problem 2), so that n = 1 and a 
bere the xf3 are the takes on only the single value 1 and may be dropped altogether. Here Q is of dimension 1
J 

(the dimension being essentially the number of coordinates, the number of values that a 
ltions will lead to takes on), and the coordinate system on it may be chosen so that the values of q range from 
5t object will be to -1/2 to i/2. 
:e to the statement 
e written in terms THE CIRCLE 
constant will drop The circle applies to the motion of a plane pendulum (Fig. 2.3b). Denote the circle 
he last K) depend by §I. Again Q is one dimensional, and the single generalized coordinate is usually taken 
Suppressing any t to be the angle and is called () rather than q. Typically the coordinates on the circle are 

chosen so that () varies from - JT to JT, or from 0 to 2JT. But note that both of these choices 
have a problem: in each of them there is one point with two coordinate values. In the I· 

\. 
(2.19) first choice the point with coordinate JT is the same as the one with coordinate -JT, and 

in the second, this is true for the coordinates 0 and 2JT. This lack of a unique relationship 
dimension of the 

between the points of Q and a coordinate system is an important property of manifolds and 
~.19) are the last K 

will be treated in some detail later (see Section 2.4). 
must be invertible, 
... , qIl+K). When 

THE PLANE
r" to be constants 

t 

The plane applies to the motion of a particle on a table (Fig. 2.3c). As before, N = 1, 


but now K = 1, so that n = 2. The coordinates are conveniently chosen to be the usual 

plane Cartesian, plane polar, or other familiar coordinates. 
(2.20) 

THE TWO-SPHERE §2these coordinates. 
The surface of the sphere applies to the motion ofa spherical pendulum, which consists ubiem reduces to 

of a point mass attached to a weightless rigid rod that is free to rotate about a fixed point 
in a uniform gravitational field (Fig. 2.3d). The coordinates usually chosen on §2 are the E3N. That is what 
azimuth angle cp (corresponding to the longitude on the globe of the Earth), which varies it makes the same 

'­


