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1. We calculate the probabilities P(u — v) for transitions to all states
which can be reached in one Monte Carlo step from the current state
1. We choose a new state v with probability proportional to P(p — v)
and change the state of the system to v.

2. Using our values for the P(u — v) we also calculate the time interval
At, Notice that we have to recalculate At at each step, since in general
it will change from one step to the next.

3. We increment the time ¢ by At, to mimic the effect of waiting At Monte
Carlo steps. The variable ¢t keeps a record of how long the simulation
has gone on for in “equivalent Monte Carlo steps”.

While this technique is in many respects a very elegant solution to the
problem of simulating a system at low temperatures (or any other system
which has a low acceptance ratio), it does suffer from one obvious drawback,
which is that step (1) above involves calculating P(y — v) for every possible
state v which is accessible from u. There may be very many such states (for
some systems the number goes up exponentially with the size of the system),
and so this step may take a very long time. However, in some cases, it turns
out that the set of transition probabilities is very similar from one step of the
algorithm to the next, only a few of them changing at each step, and hence
it is possible to keep a table of probabilities and update only a few entries
at each step to keep the table current. In cases such as these the continuous
time method becomes very efficient and can save us a great deal of CPU time,
despite being more complex than the accept/reject method discussed in the

- previous section. One example of a continuous time Monte Carlo algorithm
is presented in Section 5.2.1 for the conserved-order-parameter Ising model.

In the next few chapters, we will examine a number of common models
used for calculating the equilibrium properties of condensed matter systems,
and show how the general ideas presented in this chapter can be used to find
efficient numerical solutions to these physical problems.

mu,.onmEm

2.1 Derive Equation (2.8) from Equation (1.1).

‘2.2 Consider a system which has just three energy states, with energies
E, < E, < E;. Suppose that the only allowed transitions are ones of
the form pu — v, where v = (4 1) mod 3. Such a system cannot satisfy
detailed balance. Show nonetheless that it is possible to choose the transition
-probabilities P{u — v) so that the Boltzmann distribution is an equilibrium
of the dynamics.

3

The Ising model and the
Metropolis algorithm

In Section 1.2.2 we introduced the Ising model, which is one of the simplest
and best studied of statistical mechanical models. In this chapter and the
next we look in detail at the Monte Carlo methods that have been used
to investigate the properties of this model. As well as demonstrating the
application of the basic principles described in the last chapter, the study
of the Ising model provides an excellent introduction to the most important
Monte Carlo algorithms in use today. Along the way we will also look at some
of the tricks used for implementing Monte Carlo algorithms in computer
programs ‘and at some of the standard techniques used to analyse the data
those programs generate.

To recap briefly, the Ising model is a simple model of a magnet, in which
dipoles or “spins” s; are placed on the sites i of a lattice. Each spin can take
either of two values: +1 and —1. If there are N sites on the lattice, then the
systemn can be in 2V states, and the energy of any particular state is given
by the Ising Hamiltonian:

H=-JY ss;-BY s, (3.1)
) i

(ij

where J is an interaction energy between nearest-neighbour spins (ij), and
B is an external magnetic field. We are interested in simulating an Ising
system of finite size using Monte Carlo methods, so that we can estimate
the values of quantities such as the magnetization m (Equation (1.34)) or
the specific heat ¢ (Equation (1.37)) at any given temperature. Most of
the interesting questions concerning the Ising model can be answered by
performing simulations in zero magnetic field B = 0, so for the moment at
least we will concentrate on this case.
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‘3.1 The Metropolis algorithm

The, very first Monte Carlo algorithm we introduce in this book is the most ¢

‘famous and widely used algorithm of them all, the Metropolis algorithm, -
which was introduced by Nicolas Metropolis and his co-workers in a 1953 *

paper on simulations of hard-sphere gases (Metropolis et al. 1953). We ;
will use this algorithm to illustrate many of the general concepts involved

in a real Monte Carlo calculation, including equilibration, measurement of
expectation values, and the calculation of errors. First however, let us see
how the algorithm is arrived at, and how one might go about implementing
it on a computer.

The derivation of the Metropolis algorithm follows exactly the plan we
outlined in Section 2.3. We choose a set of selection probabilities g(u — v),

one for each possible transition from one state to another, y — v, and !

then we choose a set of acceptance probabilities A(u — v) such that Equa-
tion (2.17) satisfies the condition of detailed balance, Equation (2.14). The
algorithm works by repeatedly choosing a new state v, and then accepting
or rejecting it at random with our chosen acceptance probability. If the state
is accepted, the computer changes the system. to the new state v. If not, it
just leaves it as it is. And then the process is repeated again and again.
The selection probabilities g(u — v) should be chosen so that the condi-
tion of ergodicity—the requirement that every state be accessible from every
other in a finite number of steps—is fulfilled (see Section 2.2.2). This still
leaves us a good deal of latitude about how they are chosen; given an initial’
state p we can generate any number of candidate states v simply by flipping
different subsets of the spins on the lattice. However, as we demonstrated
in Section 1.2.1, the energies of systems in thermal equilibrium stay within
.a very narrow range—the energy fluctuations are small by comparison with
the energy of the entire system. In other words, the real system spends
most of its time in a subset of states with a narrow range of energies and
rarely makes transitions that change the energy of the system dramatically.
This tells us that we probably don’t want to spend much time in our sim-
ulation considering transitions to states whose energy is very different from
nrm energy of the present state. The simplest way of achieving this in the
Ising model is to consider only those states which differ from thé present one
by the flip of a single spin. An algorithm which does this is said to have
v single-spin-flip dynamics. The algorithm we describe in this chapter has
single-spin-flip dynamics, although this is not what makes it the Metropolis
algorithm. (As discussed below, it is the particular choice of acceptance ratio
“that characterizes the Metropolis algorithm. Our algorithm would still be a
Emiowozm algorithm even if it flipped many spins at once.)
Using single-spin-flip dynamics guarantees that the new state v will have
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m.n.mbmam% E, differing from the current energy E,, by at most 2.J for each
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bond between the spin we flip and its neighbours. For example, on a square
lattice in two dimensions each spin has four neighbours, so the maximum
difference in energy would be 8J. The general expression is 2zJ, where 2z
is the lattice coordination number, i.e., the number of neighbours that
each site on the lattice has.! Using single-spin-flip dynamics also ensures
that our algorithm obeys ergodicity, since it is clear that we can get from
any state to any other on a finite lattice by flipping one by one each of the
spins by which the two states differ.

In the Metropolis algorithm the selection probabilities g(u — v) for each
of the possible states v are all chosen to be equal. The selection probabilities
of all other states are set to zero. Suppose there are N spins in the system
we are simulating. With single-spin-flip dynamics there are then N different
spins that we could flip, and hence N possible states v which we can reach
from a given state u. Thus there are N selection probabilities g(u — v)
which are non-zero, and each of them takes the value

1

glp = v) = (3.2)

With these selection probabilities, the condition of detailed balance,
Equation {2.14), takes the form

Pu—v) _gpovAp—v) A=) _ pE-5),

Pvop) ov— mAWw—p) AW —p) (3.3)

Now we have to choose the acceptance ratios A(u — v) to satisfy this equa-
tion. As we pointed out in Section 2.2.3, one possibility is to choose

Alp — v) = Age™ 1PEEw), (3.4)
The constant of proportionality Ao cancels out in Equation (3.3), so we
can choose any value for it that we like, except that A(u — v), being a
probability, should never be allowed to become greater than one. As we
mentioned above, the largest difference in energy E, — E,, that we can have
between our two states is 2zJ, where z is the lattice coordination number.
That means that the largest value of e~ 38(Ev=Eu) is e92J. Thus, in order to

make sure A(u — v) <1 we want to choose
Ag < e P (3.5)

To make the algorithm as efficient as possible, we want the acceptance prob-
abilities to be as large as possible, so we make Ag as large as it is allowed to

1This is not the same thing as the “spin coordination number” which we introduce in
Chapter 5. The spin coordination number is the number of spins j neighbouring ¢ which
have the same value as spin i: s; = s;.
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FIGURE 3.1 Plot of the acceptance ratio given in Equation (3.6) (solid
line). This acceptance ratio gives rise to an algorithm which samples
the Boltzmann distribution correctly, but is very inefficient, since it
rejects the vast majority of the moves it selects for consideration. The
Metropolis acceptance ratio (dashed line) is much more efficient.

be, which gives us
Alp — v) = e 30B=Eut2z) (3.6)

This is not the Metropolis algorithm (we are coming to that), but using
.this acceptance probability we can perform a Monte Carlo simulation of
" the Ising model, and it will correctly sample the Boltzmann distribution.
* However, the simulation will be very inefficient, because the acceptance ratio,
Equation (3.6), is' very small for almost all moves. Figure 3.1 shows the
acceptance ratio (solid line) as a function of the energy difference AE =
E, — E, over the allowed range of values for a simulation with B=J=1
and a lattice coordination number z = 4, as on a square lattice for example.
As we can see, although A{u — v) starts off at 1 for AE = -8, it quickly
falls to only about 0.13 at AE = —4, and to only 0.02 when AE = 0. The
- chances of making any move for which AE > 0 are pitifully small, and in
practice this means that an algorithm making use of this acceptance ratio
would be tremendously slow, spending most of its time rejecting moves and

" not flipping any spins at all. The solution to this problem is as follows.

In Equation (3.4) we have assumed a particular functional form for the ac-
ceptance ratio, but the condition of detailed balance, Equation (3.3), doesn’t
actually require that it take this form. Equation (3.3) only specifies the ratio
of pairs of acceptance probabilities, which still leaves us quite a lot of room

* to manceuvre. In fact, as we pointed out in Section 2.3, when given a con-
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straint like (3.3) the way to maximize the acceptance ratios (and therefore
produce the most efficient algorithm) is always to give the larger of the two
ratios the largest value possible—namely 1—and then adjust the other to
satisfy the constraint. To see how that works out in this case, suppose that
of the two states u and .v we are considering here, y has the lower energy
and v the higher: E, < E,. Then the larger of the two acceptance ratios is
A(v — p), so we set that equal to one. In order to satisfy Equation (3.3),
A(p — v) must then take the value e~ PA(Bv~Eu) Thus the optimal algorithm
is one in which ‘

e~B(E.~E,.)

otherwise. @.7)
In other words, if we select a new state which has an energy lower than or
equal to the present one, we should always accept the transition to that state.
If it has a higher energy then we maybe accept it, with the probability given
above. This is the Metropolis algorithm for the Ising model with single-spin-
flip dynamics. It is Equation (3.7) which makes it the Metropolis algorithm.
This is the part that was pioneered by Metropolis and co-workers in their
paper on hard-sphere gases, and any algorithm, applied to any model, which
chooses selection probabilities according to a rule like (3.7) can be said to
be a Metropolis algorithm. At first, this rule may seem a little strange,
especially the part about how we always accept a move that will lower the
energy of the system. The first algorithm we suggested, Equation (3.6),
seems much more natural in this respect, since it sometimes rejects moves to
lower energy. However, as we have shown, the Metropolis algorithm satisfies
detailed balance, and is by far the more efficient algorithm, so, natural or
not, it has become the algorithm of choice in the overwhelming majority of
Monte Carlo studies of simple statistical mechanical models in the last forty
years. We have also plotted Equation (3.7) in Figure 3.1 (dashed line) for
comparison between the two algorithms.

3.1.1 Implementing the Metropolis algorithm

Let us look now at how we would actually go about writing a computer
program to perform a simulation of the Ising model using the Metropolis
algorithm. For simplicity we will continue to focus on the case of zero mag-
netic field B = 0, although the generalization to the case B # 0 is not hard
(see Problem 3.1). In fact almost all the past studies of the Ising model,
including Onsager’s exact solution in two dimensions, have looked only at
the zero-field case.

First, we need an actual lattice of spins to work with, so we would define
a set of N variables—an array—which can take the values +1. Probably we
would use integer variables, so it would be an integer array. Normally, we
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apply periodic boundary conditions to the array. That is, we specify
‘that the spins on one edge of the lattice are neighbours of the corresponding
spins on the other edge. This ensures that all spins have the same number of
neighbours and local geometry, and that there are no special edge spins which
have different properties from the others; all the spins are equivalent and the -
system is completely translationally invariant. In practice this considerably :

improves the quality of the results from our simulation. ,_.ﬁ,

A variation on the idea of periodic boundary conditions is to use “helical -
boundary conditions” which are only very slightly different from periodic
ones and possess all the same benefits but are usually considerably simpler
to implement and can make our simulation significantly faster. The vari-
ous types of boundary conditions and their implementation are described in
detail in Section 13.1, along with methods for representing most common
lattice geometries using arrays.

Next we need to decide at what temperature, or alternatively at what
value of 8 we want to perform our simulation, and we need to choose some
starting value for each of the spins—the initial state of the system. In a lot of
cases, the initial state we choose is not particularly important, though some-
times a judicious choice can reduce the time taken to come to equilibrium
(see Section 3.2). The two most commonly used initial states are the zero-
temperature state and the infinite temperature state. At T = 0 the Ising
model will be in its ground state. When the interaction energy J is greater
than zero and the external field B is zero (as is the case in the simulations
we will present in this chapter) there are actually two ground states. These
_are the states in which the spins are all up or all down. It is easy to see that
these must be ground states, since in these states each pair of spins in the
first term of Equation (3.1) contributes the lowest possible energy —J to the
Hamiltonian. In any other state there will be pairs of spins which contribute
- +J to the Hamiltonian, so that its overall value will be higher. (IfEB#0

" then there will only be one ground state—the field ensures that one of the
two is favoured over the other.) The other commonly used initial state is
the T = oo state. When T = co the thermal energy kT' available to flip
the spins is infinitely larger than the energy due to the spin-spin interaction
J, so the spins are just oriented randomly up or down in an uncorrelated
fashion.

" These two choices of initial state are popular because they each corre-
spond to a known, well defined temperature, and they are mmm.% to generate.
There is, however, one other initial state which can sometimes be very use-
ful, which we should mention. Often we don’t just perform one simulation
at o single temperature, but rather a set of simulations one after another at
a range of different values of T', to probe the behaviour of the model with
varying temperature. In this case it is often advantageous to us to choose as
- the initial state of our system the final state of the system for a simulation

et
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at a nearby temperature. For example, suppose we are interested in probing
a range of temperatures between T' = 1.0 and T = 2.0 in steps of 0.1. (Here
and throughout much of the rest of this book, we measure temperature in
energy units, so that k = 1. Thus when we say T' = 2.0 we mean that
B~1 = 2.0.) Then we might start off by performing a simulation at T = 1.0
using the zero-temperature :state with all spins aligned as our initial state.
At the end of the simulation, the system will be in equilibrium at 7' = 1.0,
and we can use the final state of that simulation as the initial state for the
simulation at T' = 1.1, and so on. The justification for doing this is clear:
we hope that the equilibrium state at T = 1.0 will be more similar to that at
T = 1.1 than will the zero-temperature state. In most cases this is a correct
assumption and our system will come to equilibrium quicker with this initial
state than with either a T = 0 or a T' = oo one.

Now we start our simulation. The first step is to generate a new state—
the one we called v in the discussion above. The new state should differ
from the present one by the flip of just one spin, and every such state should
be exactly as likely as every other to be generated. This is an easy task
to perform. We just pick a single spin k at random from the lattice to
be flipped. Next, we need to calculate the difference in energy E, — E,
between the new state and the old one, in order to apply Equation (3.7).
The most straightforward way to do this would be to calculate E,, directly by
substituting the values s} of the spins in state u into the Hamiltonian (3.1),
then flip spin k and calculate E., and take the difference. This, however, is
not a very efficient way to do it. Even in zero magnetic field B = 0 we still
have to perform the sum in the first term of (3.1), which has as many terms
as there are bonds on the lattice, which is WZ z. But most of these terms
don’t change when we flip our single spin. The only ones that change are
those that involve the fipped spin. The others stay the same and so cancel
out when we take the difference E, — E,. The change in energy between the
two states is thus .

E,-E, = I,NMU.wwuw.\ +.~memw
(i) (i)
-7 > st(sk sk (3.8)

inn tok

In the second line the sum is over only those spins i which are nearest
neighbours of the flipped spin k and we have made use of the fact that all
of these spins do not themselves flip, so that s} = st Now if s = +1, then
after spin k has been flipped we must have sj = —1, so that s, — sh=-2.
On the other hand, if s& = —1 then s} — s = +2. Thus we can write

»

sl — st = —2sk, (3.9)
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and so

I

E,—E,

2J MU si'sh

inn tok

inn tok

This expression only involves summing over z terms, rather than wz z, and
it doesn’t require us to perform any multiplications for the terms in the sum,
so it is much more efficient than evaluating the change in energy directly.
What’s more, it involves only the values of the spins in state u, so we can
evaluate it before we actually flip the spin k.

The algorithm thus involves calculating E, — E,, from Equation (3.10)
and then following the rule given in Equation (3.7): if B, — E, < 0 we
definitely accept the move and flip the spin sp — —s&. IfE, —E, >0we
still may want to flip the spin. The Metropolis algorithm tells us to flip it

with probability A(u — v) = ¢ #B»=Ex) We can do this as follows. We -

evaluate the acceptance ratio A(u — v) using our value of E, — E, from
Equation (3.10), and then we choose a random number 7 between zero and
one. (Strictly the number can be equal to zero, but it must be less than one:
0 < r < 1.) If that number is less than our acceptance ratio, 7 < Alp — v),
then we flip the spin. If it isn’t, we leave the spin alone.

And that is our complete algorithm. Now we just keep on repeating
the same calculations over and over again, choosing a spin, calculating the
energy change we would get if we flipped it, and then deciding whether to flip

i according to Equation (3.7). Actually, there is one other trick that we can
* pull that makes our algorithm a bit faster still. (In fact, on most computers
it will make it a lot faster.) One of the slowest parts of the algorithm as

we have described it is the calculation of the exponential, which we have to .

perform if the energy of the new state we choose is greater than that of the
current state. Calculating exponentials on a computer is usually done using

a polynomial approximation which involves performing a number of floating- :

point multiplications and additions, and can take a considerable amount of
* time. We can save ourselves this effort, and thereby speed up our simulation,

if we notice that the quantity, Equation (3.10), which we are calculating the .

exponential of, can only take a rather small number of values. Each of the

terms in the sum can only take the values +1 and —1. So the entire sum, -
which has z terms, can only take the values —z,—z +2,-2+4... and so
on up to +z—a total of z + 1 possible values. And we only actually need :
to calculate the exponential when the sum is negative (see Equation (3.7 .

again), so in fact there are only WN values of E, — E, for which we ever

need to calculate exponentials. Thus, it makes good sense to calculate the &
values of these WN exponentials before we start the calculation proper, and :

" store them in the computer’s memory (usually in an array), where we can,

2arst S st (3.10)
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simply look them up when we need them during the simulation. We pay
the one-time cost of evaluating them at the beginning, and save a great deal
more by never having to evaluate any exponentials again during the rest of
the simulation. Not only does this save us the effort of evaluating all those
exponentials, it also means that we hardly have to perform any floating-point
arithmetic during the simulation. The only floating-point calculations will
be in the generation of the random number 7. (We discuss techniques for
doing this in Chapter 16.) All the other calculations involve only integers,
which on most computers are much quicker to deal with than real numbers.

3.2 Equilibration

So what do we do with our Monte Carlo program for the Ising model, once
we have written it? Well, we probably want to know the answer to some
questions like “What is the magnetization at such-and-such a temperature?”,
or “How does the internal energy behave with temperature over such-and-
such a range?” To answer these questions we have to do two things. First we
have to run our simulation for a suitably long period of time until it has come
to equilibrium at the temperature we are interested in—this period is called
the equilibration time 7.q—and then we have to measure the quantity we
are interested in over another suitably long period of time and average it,
to evaluate the estimator of that quantity (see Equation (2.4)). This leads
us to several other questions. What exactly do we mean by “allowing the
system to come to equilibrium”? And how long is a “suitably long” time for
it to happen? How do we go about measuring our quantity of interest, and
how long do we have to average over to get a result of a desired degree of
accuracy? These are very general questions which we need to consider every
time we do a Monte Carlo calculation. Although we will be discussing them
here using our Ising model simulation as an example, the conclusions we
will draw in this and the following sections are applicable to all equilibrium
Monte Carlo calculations. These sections are some of the most important in
this book.

As we discussed in Section 1.2, “equilibrium” means that the average
probability of finding our system in any particular state p is proportional
to the Boltzmann weight e~@F» of that state. If we start our system off in
a state'such as the T = 0 or T = oo states described in the last section
and we want to perform a simulation at some finite non-zero temperature,
it will take a little time before we reach equilibrium. To see this, recall that,
as we demonstrated in Section 1.2.1, a system at equilibrium spends the
overwhelming majority of its time in a small subset of states in which its
internal energy and other properties take a narrow range of values. In order
to get a good estimate of the equilibrium value of any property of the system
therefore, we need to wait until it has found its way to one of the states that
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FicuRE 3.2 Nine snapshots of a 100 x 100 Ising model on a square
lattice with J = 1 coming to equilibrium at a temperature T' = 2.4
using the Metropolis algorithm. In these pictures the up-spins (s;: =
+1) are represented by black squares and the down-spins (s; = —1)
by white ones. The starting configuration is one in which all the spins
are pointing up. The progression of the figures is horizontally across
the top row, then the middle row, then the bottom one. They show
the lattice after 0, 1, 2, 4, 6, 10, 20, 40 and 100 times 100000 steps of
:,6 simulation. In the last frame the system has reached equilibrium
according to the criteria given in this section.

fall in this narrow range. Then, we assume, the Monte Carlo algorithm we

have designed will ensure that it stays roughly within that range for the rest

of the simulation—it should do since we designed the algorithm specifically :
to simulate the behaviour of the system at equilibrium. But it may take 1
some time to find a state that lies within the correct range. In the version
of the Metropolis algorithm which we have described here, we can only flip
one spin at a time, and since we are choosing the spins we flip at random,
it could take quite a while before we hit on the correct sequence of spins to
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FIGURE 3.3 The magnetization (upper curve) and internal energy
(lower curve) per site of a two-dimensional Ising model on a square
lattice of 100 x 100 sites with J = 1 simulated using the Metropo-
lis algorithm of Section 3.1. The simulation was started at T = oo
(i.e., the initial states of the spins were chosen completely at random)
and “cooled” to equilibrium at T = 2.0. Time is measured in Monte
Catlo steps per lattice site, and equilibrium is reached after about 6000
steps per site (in other words, 6 x 107 steps altogether).

flip in order to get us to one of the states we want to be in. At the very
least we can expect it to take about N Monte Carlo steps to reach a state
in the appropriate energy range, where N is the number of spins on the
lattice, since we need to allow every spin the chance to flip at least once. In
Figure 3.2 we show a succession of states of a two-dimension Ising model on
a square lattice of 100 x 100 spins with J = 1, as it is “warmed” up to a
temperature T = 2.4 from an initial T = O state in which all the spins are
aligned. Tn these pictures the +1 and —1 spins are depicted as black and
white squares. By the time we reach the last frame out of nine, the system
has equilibrated. The whole process takes on the order of 107 steps in this
case.

However looking at pictures of the lattice is not a reliable way of gauging
when the system has come to equilibrium. A better way, which takes very
little extra effort, is to plot a graph of some quantity of interest, like the
magnetization per spin m of the system or the energy of the system E, as
a function of time from the start of the simulation. We have done this in
Figure 3.3. (We will discuss the best ways of measuring these quantities
in the next section, but for the moment let’s just assume that we calculate
them directly. For example, the energy of a given state can be calculated by

G
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mmm.n::m all the values of the spins s; into the Hamiltonian, Equation (3.1
Ha, is zo.n.Wm.& to guess simply by looking at this graph gmm the system ) ]
to equilibrium at around time t = 6000. Up until this point the m:om.Em ;
and the magnetization are changing, but after this point they just fi oo
around a steady average value. : netustog
Hrm voduoi& axis in Figure 3.3 measures time in Monte Carlo ste .
lattice ..&8, which is the normal practice for simulations of this Ed&@m%%?
reason is that if time is measured in this way, then the average fre . .
with which any particular spin is selécted for flipping is wuamvmzamb%wmm Mmu\
non&: number of spins N on the lattice. This average frequency is call M ,‘
the “attempt frequency” for the spin. In the simulation we are oo:mEmZm
here the attempt frequency has the value 1. It is natural that we sho mwm
arrange .mo~ the attempt frequency to be independent of the lattice mﬁm.:. |
an experimental system, the rate at which spins or atoms or molecules o_‘_mw ”
from one state to another does not depend on how many there are in ﬂmm
whole mwmﬁmg. .>s atom in a tiny sample will change state as often as one WM
MMMHW Mwnw.mw.mﬁm of a house. Attempt frequencies are discussed further in
When we perform N Monte Carlo steps—one for each spin in the system
on average—we say we have completed one sweep of the lattice We oQEL
therefore also say that the time axis of Figure 3.3 was om:_uamnma‘ in swee
. Judging the equilibration of a system by eye from a plot such as Figure w mw
is a .Sm”mozmgm method, provided we know that the system will M:dm ﬁ
equilibrium in a smooth and predictable fashion as it does in this ¢ ;
. Hrm.nnocgm is that we usually know no such thing. In many cases mnmm
- possible for the system to get stuck in some metastable region of its mwmﬂa
~space for a while, giving roughly constant values for all the quantities SM
are ocmm.wj::m and so appearing to have reached equilibrium. In statistical
mechanical terms, there can be a local energy minimum in which the
system can H.mEmE temporarily, and we may mistake this for the global
energy minimum, which is the region of state space that the equilibrium
.m%mama is most likely to inhabit. (These ideas are discussed in more detail
in the first few sections of Chapter 6.) To avoid this potential pitfall, we
.ooBB.o:_% adopt a different strategy for determining the equilibration &Em
-in which we perform two different simulations of the same system, startin :
them in different initial states. In the case of the Ising model we n,nmg mom
‘mmeEmu start one in the T = 0 state with all spins aligned, and one E, the
T =00 mdm.wm with random spins. Or we could choose two different T — 00
MmbaoB-me states. We should also run the two simulations with different
seeds” for the random number generator (see Section 16.1.2), to ensure
that they n.mwm different paths to equilibrium. Then we watch ﬁ,:m value of
) the magnetization or energy or other quantity in the two systems and when
_we see them reach the same approximately constant value, we deduce that
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FicURE 3.4 The magnetization of our 100 x 100 Ising model as a
function of time (measured in Monte Carlo steps per lattice site) for
two different simulations using the Metropolis algorithm. The two
simulations were started off in two different T = oo (random-spin)
states. By about time ¢t = 6000 the two simulations have converged to
the same value of the mean magnetization, within the statistical errors
due to fluctuations, and so we conclude that both have equilibrated.

both systems have reached equilibrium. We have done this for two 100 x 100
Ising systems in Figure 3.4. Again, we clearly see that it takes about 6000
Monte Carlo steps for the two systems to reach a consensus about the value
of the magnetization. This technique avoids the problem mentioned above,
since if one of the systems finds itself in some metastable region, and the
other reaches equilibrium or gets stuck in another metastable region, this will
be apparent from the graph, because the magnetization (or other quantity)
will take different values for the two systems. Only in the unlikely event
that the two systems coincidentally become trapped in the same metastable
region (for example, if we choose two initial states that are too similar to
one another) will we be misled into thinking they have reached equilibrium
when they haven’t. If we are worried about this possibility, we can run three
different simulations from different starting points, or four, or five. Usually,

however, two is sufficient.

3.3 Measurement

*
Once we are sure the system has reached equilibrium, we need to measure

whatever quantity it is that we are interested in. The most likely candidates
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for the Ising model are the energy and the magnetization of the system. As
we pointed out above, the energy E, of the current state p of the system
can be evaluated directly from the Hamiltonian by substituting in the values
of the spins s; from our array of integers. However, this is not an especially
efficient way of doing it, and there is a much better way. As part of our
implementation of the Metropolis algorithm, you will recall we calculated
the energy difference AE = E, — E, in going from state p to state v (see
Equation (3.10)). So, if we know the energy of the current state p, we can
calculate the new energy when we flip a spin, using only a single addition:

E,=E, +AE. (3.11)

So the clever thing to do is to calculate the energy of the system from the
Hamiltonian at the very start of the simulation, and then every time we flip
a spin calculate the new energy from Equation (3.11) using the value of AE
which we have to calculate anyway. u

Calculating the magnetization is even easier. The total magnetization
M,, of the whole system in state 1 (as opposed to the magnetization per
spin—we’ll calculate that in a moment), is given by the sum

M, =) st (3.12)
3

As with the energy, it is not a shrewd idea to evaluate the magnetization
directly from this sum every time we want to know it. It is much better to
notice that only one spin k flips at a time in the Metropolis algorithm, so
the change of magnetization from state u to state v is

D.\En.ﬁ\,l.gtHmelewmelmnnwmm‘ (3.13)

where the last equality follows from Equation (3.9). Thus, the clever way to
evaluate the magnetization is to calculate its value at the beginning of the
simulation, and then make use of the formula

M, = M, + AM = M, + 2s}  (314)

every time we flip a spin.?

2However, to be absolutely fair, we should point out that doing this involves performing
at least one addition operation every time we flip a spin, or one addition every A~ steps,
where A is the mean acceptance ratio. Direct evaluation of Equation (3.12) on the ogmm
hand involves N additions every time we want to know the magnetization. Thus, if we
want to make measurements less often than once every N/ A steps, it may pay to use the
direct method rather than employing Equation (3.14). Similar considerations apply to
thé measurement of the energy also.
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Given the energy and the magnetization of our Ising system at a selection
of times during the simulation, we can average them to find the estimators of
the internal energy and average magnetization. Then dividing these figures
by the number of sites N gives us the internal energy and average magneti-
zation per site. :

We can also average the squares of the energy and magnetization to find
quantities like the specific heat and the magnetic susceptibility:

B “
¢ ww:muv —{E)%), (3.15)

X = BN((m?) = (m)?). (3.16)
(See Equations (1.36) and (1.37). Note that we have set k = 1 again.)

In order to average quantities like E and M, we need to know how long a
run we have to average them over to get a good estimate of their expectation
values. One simple solution would again be just to look at a graph like
Figure 3.3 and guess how long we need to wait. However (as you might
imagine) this is not a very satisfactory solution. What we really need is
a measure of the correlation time T of the simulation. The correlation
time is a measure of how long it takes the system to get from one state to
another one which is significantly different from the first, i.e., a state in which
the number of spins which are the same as in the initial state is no more
than what you would expect to find just by chance. (We will give a more
rigorous definition in a moment.) There are a number of ways to estimate
the correlation time. One that is sometimes used is just to assume that it
is equal to the equilibration time. This is usually a fairly safe assumption:®
usually the equilibration time is considerably longer than the correlation
time, Teq > T, because two states close to equilibrium are qualitatively more
similar than a state far from equilibrium (like the T = 0 or T' = oo states
we suggested for starting this simulation with) and one close to equilibrium.
However, this is again a rather unrigorous supposition, and there are more
watertight ways to estimate 7. The most direct of these is to calculate the
“time-displaced autocorrelation function” of some property of the model.

i

3.3.1 Autocorrelation functions

Let us take the example of the magnetization m of our Ising model. The
time-displaced autocorrelation x(t) of the magnetization is given by

\ dt’ [m(t) = (my)[m(t’ + 1) — (m)]
\&\ [m(t")ym(t' +1t) - (m)?]. (3.17)

I

x(t)

31n particular, it works fine for the Metropolis simulation of the Ising model which we
are considering here.
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where m(t) is the instantaneous value of the magnetization at time ¢t and’
{m) is the average value. This is rather similar to the connected correlation’ -
function which we defined in Equation (1.26). That measured the correlation

between the values of a quantity (such as the magnetization) on two different -

sites, ¢ and j, on the lattice. The autocorrelation gives us a similar measure

of the correlation at two different times, one an interval t later than the .;
other. If we measure the difference between the magnetization m(t') at
time ¢’ and its mean value, and then we do the same thing at time ¢ + t,°
and we multiply them together, we will get a positive value if they were
fluctuating in the same direction at those two times, and a negative one if
they were fluctuating in opposite directions. If we then integrate over time
as in Equation (3.17), then x(¢) will take a non-zero value if on average
the fluctuations are correlated, or it will be zero if they are not. For our
Metropolis simulation of the Ising model it is clear that if we measure the
magnetization at two times just a single Monte Carlo step apart, the values
we get will be very similar, so we will have a large positive autocorrelation.
On the other hand, for two times a long way apart the magnetizations will
probably be totally unrelated, and their autocorrelation will be close to
zero. Ideally, we should calculate x(t) by integrating over an infinite time,
but this is obviously impractical in a simulation, so we do the best we can
and just sum over all the measurements of m that we have, from beginning
to end of our run. Figure 3.5 shows the magnetization autocorrelation of our
100 x 100 Ising model at temperature T = 2.4 and interaction energy J = 1,

calculated in exactly this manner using results from our Metropolis Monte

.,..ﬁwmb one correlation time. In fact, the most natural definition of statistical

(In the next section we show why it should take this form.) With this |

Carlo simulation. As we can see, the autocorrelation does indeed drop from

a significant non-zero value at short times ¢ towards zero at very long times.

Tn this case, we have divided x(t) by its value x(0) at ¢ = 0, so that its
; maximum value is one. The typical time-scale (if there is one) on which it
_falls off is a measure of the correlation time 7 of the simulation. In fact,
this is the definition of the correlation time. It is the typical time-scale on

which the autocorrelation drops off; the autocorrelation is expected to fall
off exponentially at long times thus:

x(t) ~ e 7, (3.18)

definition, we see that in fact there is still a significant correlation between
two samples taken a correlation time apart: at time ¢ = 7 the autocorrelation
function, which is a measure of the similarity of the two states, is only
a factor of 1/e down from its maximum value at ¢t = 0. If we want truly
independent samples then, we may want to draw them at intervals of greater

independence turns out to be samples drawn at intervals of 2r. We discuss
this point further in Section 3.4.1.
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FIGURE 3.5 The magnetization autocorrelation function x(t) for a
two-dimensional Ising model at temperature T = 2.4 on a square lat-
tice of 100 x 100 sites with J = 1 simulated using the Metropolis
algorithm of Section 3.1. Time is measured in Monte Carlo steps per
site.

We can make a reasonable estimate of 7 by eye from Figure 3.5. At a
guess we’d probably say 7 was about 100 in this case. This is an accurate
enough figure for estimating how long a Monte Carlo run we need to do
in order to get decent statistics. It tells us that we expect to get a new
independent spin configuration about once every 27 = 200 sweeps of the
lattice in our simulation. So if we want, say, 10 independent measurements
of the magnetization, we need to run our Metropolis algorithm for about
2000 sweeps after equilibration, or 2 x 107 Monte Carlo steps. If we want
100 measurements we need to do 2 x 10® steps. In general, if a run lasts a
time tmax, then the number of independent measurements we can get out of
the run, after waiting a time 7¢q for equilibration, is on the order of

n= bimax
2T

Tt is normal practice in a Monte Carlo simulation to make measurements
at intervals of less than the correlation time. For example, in the case of the
Metropolis algorithm we might make one measurement every sweep of the
lsttice. Thus the total number of measurements we make of magnetization
or energy (or whatever) during the run is usually greater than the number
of independent measurements. There are a number of reasons why we do
it this way. First of all, we usually don’t know what the correlation time
is until -after the simulation has finished, or at least until after it has run

(3.19)
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FIGURE 3.6 The autocorrelation function of Figure 3.5 replotted on
semi-logarithmic axes. The dashed line is a straight line fit which
yields a figure of 7 = 955 in this case. Note that the horizontal scale
is not the same as in Figure 3.5.

for a certain amount of time, and we want to be sure of having at least one

measurement every two correlation times. Another reason is that we want -

to be able to calculate the autocorrelation function for times less than a i
_correlation time, so that we can use it to make an accurate estimate of the =
correlation time. If we only had one measurement every 27, we wouldn’t be

able to calculate T with any accuracy at all.

If we want a more reliable figure for 7, we can replot our autocorrelation

..mcdoiob on semi-logarithmic axes as we have done in Figure 3.6, so that
‘the slope of the line gives us the correlation time. Then we can estimate 7

by. fitting the straight-line portion of the plot using a least-squares method. -
The dotted line in the figure is just such a fit and its slope gives us a figure °

of 7 = 95 & 5 for the correlation time in this case.

An alternative is to calculate the integrated correlation time.? If we

assume that Equation (3.18) is accurate for all times ¢ then

\ X®) g, \ et/ dt = 1. (3.20)
0 0

x(0)

This form has a number of advantages. First, it is often easier to apply Equa- |

tion (3.20) than it is to perform the exponential fit to the autocorrelation

: m_H_Em is a rather poor name for this quantity, since it is not the correlation time that
is integrated but the autocorrelation function. However, it is the name in common use so
we use it here too.
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function. Second, the method for estimating 7 illustrated in Figure 3.6 is
rather sensitive to the range over which we perform the fit. In particular, the
very long time behaviour of the autocorrelation function is often noisy, and
it is important to exclude this portion from the fitted data. However, the
exact point at which we truncate the fit can have quite a large effect on the
resulting value for 7. The integrated correlation time is much less sensitive
to the way in which the data are truncated, although it is by no means per-
fect either, since, as we will demonstrate in Section 3.3.2, Equation (3.18)
is only strictly correct for long times ¢, and we introduce an uncontrolled
error by assuming it to be true for all times. On the other hand, the di-
rect fitting method also suffers from this problem, unless we only perform
our fit over the exact range of times for which true exponential behaviour is
present. Normally, we don’t know what this range is, so the fitting method is
no more accurate than calculating the integrated correlation time. Usually
then, Equation (3.20) is the method of choice for calculating 7. Applying
it to the data from Figure 3.6 gives a figure of 7 = 86 £ 5, which is in
moderately good agreement with our previous figure.

The autocorrelation function in Figure 3.5 was calculated directly from
a discrete form of Equation (3.17). If we have a set of samples of the mag-
netization m(t) measured at evenly-spaced times up to some maximum time

t max, then the correct formula for the autocorrelation function is®
] tmexct
x(t) = 77— Mo m(t) m(t' +¢)
- ;M.,U.ﬁs@\v x —2 ;WULSQ +). (3.21)
bmax =t i tmax =t [5

Notice how we have evaluated the mean magnetization m in the second term
using the same subsets of the data that we used in the first term. This is
not strictly speaking necessary, but it makes x(t) a little better behaved. In
Figure 3.5 we have also normalized x(t) by dividing throughout by x(0), but
this is optional. We've just done it for neatness.

Note that one should be careful about using Equation (3.21) to evaluate
x(t) at long times. When ¢ gets close to tmax, the upper limit of the sums
becomes small and we end up integrating over a rather small time interval
to get our answer. This means that the statistical errors in x(t) due to
the random nature of the fluctuations in m(t) may become large. A really
satisfactory simulation would always run for many correlation times, in which
case we will probably not be interested in the very tails of x(t), since the
correlations will have died away by then, by definition. However, it is not

5In fact, this formula differs from (3.17) by a multiplicative constant, but this makes
1o difference as far as the calculation of the correlation time is concerned.
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ﬂé@%m H.UOmm:u_P because we only have limited computer resources, to perform
simulations as long as we would like, and one should always be aware that |

errors of this type can crop up with shorter data sets.
Calculating the autocorrelation function from Equation (3.21) takes time

. u !
of order n?, where n is the number of samples. For most applications, this ;

is not a problem. Even for simulations where several thousand samples
are taken, the time needed to evaluate the autocorrelation is only a few
seconds on a modern computer, and the simplicity of the formulae makes
their programming very straightforward, which is a big advantage—people-
time is usually more expensive than computer-time. However, sometimes it
is desirable to calculate the autocorrelation function more quickly. This is
particularly the case when one needs to do it very often during the course of

a calculation, for some reason. If you need to calculate an autocorrelation a

thousand times, and each time takes a few seconds on the computer, then

the seconds start to add up. In this case, at the expense of rather greater -
programming effort, we can often speed up the process by the following trick. § e

Instead of calculating x(t) directly, we calculate the Fourier transform X{(w)

of the autocorrelation and then we invert the Fourier transform to get x(t). -

The Fourier transform is related to the magnetization as follows:
\&ms\&§i$|€i§Q+s|§x
\@ﬂ\&mé:3q7;§$§:¢§Q+a|?g

i (w) A (~w) = | (@)%,

where M/ (w) is the Fourier transform of m/(t) = m(?) - (m).
. So all we need to do is calculate the Fourier transform of m'(t) and
feed it into this formula to get X(w). The advantage in doing this is that
»&m Fourier transform can be evaluated using the so-called fast Fourier
transform or FFT algorithm, which was given by Cooley and Tukey in
1965. This is a standard algorithm which can evaluate the Fourier transform
in a time which goes like nlogn, where n is the number of measurements
of the magnetization.” Furthermore, there exist a large number of ready-
made computer software packages that perform FFTs. These packages have

I

X(w)

(3.22)

6Since m(t) and m’(t) differ only by a constant, m{w) and m’(w) differ only in their
w =.0 component (which is zero in the latter case, but may be non-zero in the former).
For this reason, it is often simplest to calculate m’(w) by first calculating m(w) and then
just setting the w = 0 component to zero.

70n a technical note, if we simply apply the FFT algorithm directly to our magnetiza-
- tion data, the result produced is the Fourier transform of an infinite periodic repetition of
* the data set, which is not quite what we want in Equation (3.22). A simple way of getting
around this problem is to add n zeros to the end of the data set before we perform the
transform. It can be shown that this then gives a good estimate of the autocorrelation
function (Futrelle and McGinty 1971).
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been written very carefully by people who understand the exact workings of
the computer and are designed to be as fast as possible at performing this
particular calculation, so it usually saves us much time and effort to make
use of the programs in these packages. Having calculated ¥(w), we can then
invert the Fourier transform, again using a streamlined inverse FFT routine
which also runs in time proportional to nlogn, and so recover the function
x(t).

We might imagine that, if we wanted to calculate the integrated correla-
tion time, Equation (3.20), we could avoid inverting the Fourier transform,
since

o0
x0) =[x (323)
and thus £(0)
X
=2 3.24
x(0) (324
where x(0) is simply the magnetization fluctuation
x(0) = (m®) ~ (m)*. (3.25)

However, you should avoid calculating 7 this way because, as footnote 6 on
the previous page makes clear, %(0) is zero when calculated directly for finite
datasets. Equation (3.24) is only applicable if (m) is calculated over a much
longer run than X(w).

3.3.2 Correlation times and Markov matrices

The techniques outlined in the previous section are in most cases quite suffi-
cient for estimating correlation times in Monte Carlo simulations. However,
we have simplified the discussion somewhat by supposing there to be only
one correlation time in the system. In real life there are as many correla-
tion times as there are states of the system, and the interplay between these
different times can sometimes cause the methods of the last section to give
inaccurate results. In this section we look at these issues in more detail. The
reader who js interested only in how to calculate a rough measure of 7 could
reasonably skip this section.

In Section 2.2.3 we showed that the probabilities w,(t) and w,(t + 1) of
being in a particular state p at consecutive Monte Carlo steps are related
by the Markov matrix P for the algorithm. In matrix notation we wrote

w(t+1) =P w(t), (3.26)
where w is the vector whose elements are the probabilities w, (see Equa-
tion (2.9)). By iterating this equation from time ¢ = 0 we can then show
that

w(t) = Pt - w(0). (3.27)




where q is the vector whose elements are the values @, of the quantity in
~ the various states of the system. Substituting Equation (3.29) into (3.31) we

‘eigenvalue Mo and is proportional to gg. If we now define a set of quantities

-1; thus:
. 1
T o (3.33)
for all i # 0, then Equation (3.32) can be written
Q(t) = Q(o0) + Y asgie™"/™. (3.34)
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Now w(0) can be expressed as a linear combination of the right eigenvectors

v; of P thus:®
w(0) = M aiVi, (3.28)
i

where the quantities a; are coefficients whose values depend on the configu-
ration of the system at t = 0. Then

w(t) =P > avi=) v,
i i .

where ); is the eigenvalue of P corresponding to the eigenvector v;. As
t — oo, the right-hand side of this equation will be dominated by the term
involving the largest eigenvalue Ag of the Markov matrix. This means that
in the limit of long times, the probability distribution w(¢) becomes pro-
portional to vy, the eigenvector corresponding to the largest eigenvalue. We
made use of this result in Section 2.2.3 to demonstrate that w(t) tends to
the Boltzmann distribution at long times.

Now suppose that we are interested in knowing the value of some observ-
able quantity @, such as the magnetization. The expectation value of this
quantity at time t can be calculated from the formula

Q) = MStS Qu
n

(3.29)

(3.30)

_or

Q(t) = q- w(t), (3.31)

then get .
Q) =3aMa-vi=) aXia. (3.32)
i i

Here g; =q-V is the expectation value of @ in the ith eigenstate. The
long time limit Q(oo) of this expression is also dominated by the largest

i#0

8P is in general not symmetric, so its right and left eigenvectors are not the same.
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The quantities 7; are the correlation times for the system, as we can demon-
strate by showing that they also govern the decay of the autocorrelation
function. Noting that the long-time limit Q(oo) of the expectation of @ is
none other than the equilibrium expectation (Q), we can write the autocor-
relation of @ as the correlation between the expectations at zero time and
some later time ¢ thus:

x(®) = [Q(0) - Qeo)[Qt) — Q(oo)] = Y bie™"/™,

i#0

(3.35)

with

b; = M a;0;9;q;-

3#0

(3.36)

Equation (3.35) is the appropriate generalization of Equation (3.18) to all
times ¢ (not just long ones).

As we said, there are as many correlation times as there are states of
the system since that is the rank of the matrix P. (Well, strictly there
are as many of them as the rank of the matrix less one, since there is no
o corresponding to the highest eigenvalue. There are 2N — 1 correlation
times in the case of the Ising model, for example. However, the rank of the
matrix is usually very large, so let’s not quibble over one correlation time.)
The longest of these correlation times is 71, the one which corresponds to
the second largest eigenvalue of the matrix. This is the correlation time we
called 7 in the last section. Clearly, for large enough times ¢, this will be
the only correlation time we need to worry about, since all the other terms
in Equation (3.35) will have decayed away to insignificance. (This is how
Equation (3.18) is derived.) However, depending on how close together the
higher eigenvalues of the Markov matrix are, and how long our simulation
runs for, we may or may not be able to extract reliable results for 71 by
simply ignoring all the other terms. In general the most accurate results are
obtained by fitting our autocorrelation function to a sum of a small number
of decaying exponentials, of the form of Equation (3.35), choosing values
for the quantities b; by a least-squares or similar method. In work on the
three-dimensional Ising model, for example, Wansleben and Landau (1991)
showed that including three terms was sufficient to get a good fit to the
magnetization autocorrelation function, and thus get an accurate measure
of the longest correlation time 7 = 71. In studies of the dynamical properties
of statistical mechanical models, this is the most correct way to measure the
correlation time. Strictly speaking it gives only a lower bound on 7 since it
is always possible that correlations exist beyond the longest times that one
can measure. However, in practice it usually gives good results.
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3.4 Calculation of errors

Normally, as well as measuring expectation values, we also want to calculate

the errors on those values, so that we have an idea of how accurate they

are. As with experiments, the errors on Monte Carlo results divide into two
classes: mmwfmﬁomﬂ errors and systematic errors.® Statistical errors are
errors which arise as a result of random changes in the simulated system from

measurement to measurement—thermal fluctuations, for example—and they m

can .,Uw estimated simply by taking many measurements of the quantity we
are interested in and calculating the spread of the values. Systematic errors
on the other hand, are errors due to the procedure we have used to make
the Hd.mmm:noamzﬁmq and they affect the whole simulation. An example is the
error introduced by waiting only a finite amount of time for our system to
equilibrate. (Ideally, we should allow an infinite amount of time for this, in

order to be sure the system has completely equilibrated. However. this. of
course, is not practical.) . ,

3.4.1 Estimation of statistical errors

In a Monte Carlo calculation the principal source of statistical error in the
58&:6& value of a quantity is usually the fluctuation of that quantity from
one time step to the next. This error is inherent in the Monte Carlo method
As the name “Monte Carlo” itself makes clear, there is an innate 5:&05..
ness and statistical nature to Monte Carlo calculations. (In Chapter 6 on
mMWmm% spin models, we will see another source of statistical error: “sample-
to-sample” fluctuations in the actual system being simulated. However, for
the simple Ising model we have been considering, thermal m:odcmaozm, are
the only source of statistical error. All other errors fall into the category of
wu\mﬁmamﬁmo errors.) It is often straightforward to estimate the statistical error
in a measured quantity, since the assumption that the error is statistical-—
Le., that it arises through random deviations in the measured value of the
quantity-—implies that we can estimate the true value by taking the mean of
several different measurements, and that the error on that estimate is simply
the error on the mean. Thus, if we are performing the Ising model simula-
tion described in the last section, and we make n measurements m. of the
magnetization of the system during a particular run, then our best msmﬁamam
_of the true gmlﬁ& average of the magnetization is the mean 7 of those n
measurements (which is just the estimator of m, as defined in Section 2.1),

c 4 . . .
. Monte Carlo m_BEmHS:m are in many ways rather similar to experiments. It often
helps to regard them as “computer experiments”, and analyse the results in the same way
- as we would analyse the results of a laboratory experiment.
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and our best estimate of the standard deviation on the mean is given by'?

o = WMMHGAS@ lﬂvn =
n-l

This expression assumes that our samples m; are statistically indepen-
dent, which in general they won’t be. As we pointed out in Section 3.3.1, 1t
is normal to sample at intervals of less than a correlation time, which means
that successive samples will in general be correlated. A simple and usually
perfectly adequate solution to this problem is to use the value of n given
by Equation (3.19), rather than the actual number of samples taken. In
fact, it can be shown (Miiller-Krumbhaar and Binder 1973) that the correct
expression for ¢ in terms of the actual number of samples is

o= /\EA%I.ﬂwY

n-1

(3.38)

where 7 is the correlation time and At is the time interval at which the
samples were taken. Clearly this becomes equal to Equation (3.37) when
At 3> 7, but more often we have At <« 7. In this case, we can ignore the 1
in-the numerator of Equation (3.38). Noting that for a run of length tmax
(after equilibration) the interval At is related to the total number of samples
by

ﬁam.x

= (3.39)

At

we then find that for large n

(3.40)

which is the same result as we would get by simply using Equation (3.19)
for  in Equation (3.37). This in fact was the basis for our assertion in
Section 3.3.1 that the appropriate sampling interval for getting independent
samples was twice the correlation time. Note that the value of ¢ in Equa-
tion (3.40) is independent of the value of At, which means we are free to
choose At in whatever way is most convenient.

3.4.2 The blocking method

There are some cases where it is either not possible or not straightforward to
estimate the error in a quantity using the direct method described in the last

10The origin of the n — 1 in this and following expressions for error estimates is a
little obscure. The curious reader is referred to any good book on data analysis for an
explanation, such as Bevington and Robinson (1992).
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MME.m Bmmmc.nmﬁmi. repeated many times over the course of the simulation. as
e magnetization is, but is instead derived in some more complex way m.,oB
measurements we make during the run. An example is the specific heat c

bl

m%:mﬁou Q.Hmvm which is inherently an average macroscopic quantity. Unlike:
the magnetization, the specific heat is not defined at a single time step in the.

simulation. It is only defined in terms of averages of many measurements

w .
of E and E* over a longer period of time. We might imagine that we could:

calculate the error on (E) and the error on (E?) using the techniques we

employed for the magnetization, and then combine them in some fashion.

to give an estimate of the error in c. But this is not as straightforward as-

it seems at first, since the errors in these two quantities are correlated—
when (E) goes up, so does (E2). It is possible to do the analysis necessa; :
aw calculate the error on ¢ in this fashion. However, it is not vmnanEmM%
simple, and there are other more general methods of error estimation whi W
lend themselves to this problem. As the quantities we want to Emmm“m
U.mooEm more complex, these methods— “blocking”, the “bootstrap” and th
.Jmowwamm:alciz save us a great deal of effort in estimating errors <<m
illustrate these methods here for the case of the specific heat ero_w h .M :
should be clear that they are applicable to almost any quantit ww t o be.
measured in a Monte Carlo simulation. Y chat can be,
Hw.m simplest of our general-purpose error estimation methods is the
Eonw_bm method. Applied to the specific heat, the idea is that we dmwm
wmrm measurements of E that we made during the simulation and &,\_Em them
‘into several groups, or blocks. We then calculate c separately for each block,
ms@ the spread of values from one block to another gives us an estimate OW
the error. To see how this works, suppose we make 200 measurements of th
energy during our Ising model simulation, and then split those into 10 grou M
..o», 20 measurements. We can evaluate the specific heat from mvncmaonma Hmv
m.nwn each group and then find the mean of those 10 results exactl .@m. w
did for the magnetization above. The error on the mean is given @% ain Um
m@.maon (3.37), except that n is now replaced by the number n, Ommzooww
which would be 10 in our example. This method is intuitive, and will ?m.
a reasonable estimate of the order of magnitude of the m:om in a a:mcm#
'such as c. However, the estimates it gives vary depending on the numb d
of different blocks you divide your data up into, with the smallest bein "
sociated with large numbers of blocks, and the largest with small z:Eva,w.
_of blocks, so it is clearly not a very rigorous method. A related but mo :
nm.:mzm method, which can be used for error estimation in a wide variet MM
) different circumstances, is the bootstrap method, which we now momnwwvm ;

section. This happens when the result we want is not merely the average oww
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3.4.3 The bootstrap method

The bootstrap method is a resampling method. Applied to our problem
of calculating the specific heat for the Ising model, it would work like this.
We take our list of measurements of the energy of the model and from the
n numbers in this list we pick out n at random. (Strictly, n should be the
number of independent measurements. In practice the measurements made
are usually not all independent, but luckily it transpires that the bootstrap
method is not much affected by this difference, a point which is discussed
further below.) We specifically allow ourselves to pick the same number
twice from the list, so that we end up with n numbers each of which wvwm.mwm
on the original list, and some of which may be duplicates of one another. (In
fact, if you do your sums, you can show that about a fraction 1 —1/e ~ 63%
of the numbers will be duplicates.) We calculate the specific heat from
these n numbers just as we would normally, and then we repeat the process,
picking (or resampling) snother n numbers at random from the original
measurements. It can be shown (Efron 1979) that after we have repeated
this calculation several times, the standard deviation of the distribution in
the results for ¢ is a measure of the error in the value of c. In other words
if we make several of these “bootstrap” calculations of the specific heat, our
estimate of the error o is given by

(3.41)

Notice that there is no extra factor of 1/(n — 1) here as there was in Equa-
tion (3.37). (It is clear that the latter would not give a correct result, since
it would imply that our estimate of the error could be reduced by simply
resampling our data more times.)

As we mentioned, it is not necessary for the working of the bootstrap
method that all the measurements made be independent in the sense of Sec-
tion 3.3.1 (i.e., one every two correlation times or more). As we pointed
out earlier, it is more common in a Monte Carlo simulation to make mea-
surements at comfortably short intervals throughout the simulation so as to
be sure of making at least one every correlation time or so and then calcu-
late the number of independent measurements made using Equation (3.19).
Thus the number of samples taken usually exceeds the number which ac-
tually constitute independent measurements. One of the nice things about
the bootstrap method is that it is not necessary to compensate for this dif-
ference in applying the method. You get fundamentally the same estimate
of the error if you simply resample your n measurements from the entire
set of measurements that were made. In this case, still about 63% of the
samples will be duplicates of one another, but many others will effectively
be duplicates as well because they will be measurements taken at times less
than a correlation time apart. Nonetheless, the resulting estimate of o is the
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- same.

. The vwoﬁmimv method is a good general method for estimating errors
in ﬁzwsn&amm :.ammﬁma by Monte Carlo simulation. Although the method"
initially met with some opposition from mathematicians who were not 85-_

vinced of its statistical validity, it is now widel ivi
: , y accepted as
estimates of errors (Efron 1979). g Eiving good

SEE

B

3.4.4 The jackknife method

ViR

A slightly different but related method of error estimation is the jackknife
For this method, unlike the bootstrap method, we really do need to choose : «
independent samples out of those that were made during the run, taking one
approximately every two correlation times or more. Applying S,E jackknife ,
method to the case of the specific heat, we would first use these samples to
calculate a value ¢ for the specific heat. Now however, we also calculate n
other estimates c; as follows. We take our set of n measurements, and we
remove the first one, leaving n — 1, and we calculate the mvonmmoq heat ¢
from that subset. Then we put the first one back, but remove the mmaoum
and calculate ¢, from that subset, and so forth. Each ¢; is the specific heat
calculated with the i*" measurement of the energy removed from the set

leaving n — 1 measurements. It can then be shown that an estimate of the
error in our value of ¢ is

(3.42)

where c is our estimate of the specific heat using all the data.!!

mog the jackknife and the bootstrap give good estimates of errors for
large data sets, and as the size of the data set becomes infinite they give
exact estimates. Which one we choose in a particular case usually depends
on how Bﬁoﬁ work is involved applying them. In order to get a decent error
estimate from the bootstrap method we usually need to take at least 100
resampled sets of data, and 1000 would not be excessive. (100 would give
the error to a bit better than 10% accuracy.) With the jackknife we have to
recalculate the quantity we are interested in exactly n times to get the error
estimate. So, if n is much larger than 100 or so, the bootstrap is probably
the more efficient. Otherwise, we should use the jackknife.l?

) 111n fact, it is vOm.m:u_m to use the jackknife method with samples taken at intervals At
.~ less than 27. In $z.m case we just reduce the sum inside the square root by a factor of
...Pu\.,mﬂ to get an aestimate of o which is independent of the sampling interval.

12For a more detailed discussion of these t i
. wo methods, we refer the interes
the review article by Efron (1979). rested reader to
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3.4.5 Systematic errors

Just as in experiments, systematic errors are much harder to gauge than
statistical ones; they don’t show up in the fluctuations of the individual mea-
surements of a quantity. (That’s why they are systematic errors.) The main
source of systematic error in the Ising model simulation described in this
chapter is the fact that we wait only a finite amount of time for the system
to equilibrate. There is no good general method for estimating systematic
errors; each source of error has to be considered separately and a strategy
for estimating it evolved. This is essentially what we were doing when we
discussed ways of estimating the equilibration time for the Metropolis algo-
fithm. Another possible source of systematic error would be not running the
simulation for a long enough time after equilibration to make good indepen-
dent measurements of the quantities of interest. When we discussed methods
for estimating the correlation time 7, we were dealing with this problem. In
the later sections of this chapter, and indeed throughout this book, we will
discuss methods for estimating and controlling systematic errors as they crop
up in various situations.

3.5 Measuring the entropy

We have described how we go about measuring the internal energy, specific
heat, magnetization and magnetic susceptibility from our Metropolis Monte
Carlo simulation of the Ising model. However, there are three quantities of
interest which were mentioned in Chapter 1 which we have not yet discussed:
the free energy F, the entropy S and the correlation function G (1,7). The
correlation function we will consider in the next section. The other two we
consider now.
The free energy and the entropy are related by

F=U-TS (3.43)

<o that if we can calculate one, we can easily find the other using the known
value of the total internal energy U. Normally, we calculate the entropy,
which we do by integrating the specific heat over temperature as follows.
We can calculate the specific heat of our system from the fluctuations in
the internal energy as described in Section 3.3. Moreover, we know that the

specific heat C is equal to 4s
=T—. 3.44
C=T T (3.44)

Thus the entropy S(T') at temperature T is
Tc

MAMJV = .m.AHJOV + ,\ T dT. Aw.%mv

To
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If we are only interested in how S varies with T', then it is not necessary
to know the value of the integration constant S(Ty) and we can give it any
value we like. If we want to know the absolute value of S, then we have
to fix S(Tp) by choosing Ty to be some temperature at which we know the
value of the entropy. The conventional choice, known as the third law of
thermodynamics, is to make the entropy zero!® when Ty = 0. In other
words

T
S(T) = \o %aﬁ : (3.46)

As with the other quantities we have discussed, we often prefer to calculate
the entropy per spin s(T") of our system, which is given in terms of the
specific heat per spin c by

T
s(T) = \o waﬁ. : (3.47)

Of course, evaluating either of these expressions involves calculating the
specific heat over a range of temperatures up to the temperature we are
interested in, at sufficiently small intervals that its variation with T is well
approximated. Then we have to perform a numerical integral using, for
example, the trapezium rule or any of a variety of more sophisticated in-
tegration techniques (see, for instance, Press et al. 1988). Calculating the
entropy (or equivalently the free energy) of a system is therefore a more com-
. plex task than calculating the internal energy, and may use up considerably
more computer time. On the other hand, if we are interested in probing
‘the behaviour of our system over a range of temperatures anyway (as we
often. are), we may as well make use of the data to calculate the entropy;
the integration is a small extra computational effort to make by comparison
. with the simulation itself.

The integration involved in the entropy calculation can give problems. In
particular, if there is any very sharp behaviour in the curve of specific heat
as a function of temperature, we may miss it in our simulation, which would
give the integral the wrong value. This is a particular problem near “phase

,.ﬂmcm.&odmu, where the specific heat often diverges (see Section 3.7.1).

3.6 Measuring correlation functions

One other quantity which we frequently want to measure is the two-point

connected correlation function G&) (2,7)- Let us see how we would go about

138ystems which have more than one ground state may violate the third law. This UO»R. i

"is discussed in more detail in Section 7.1.2.
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calculating this correlation function for the Ising model. The most straight-
forward way is to evaluate it directly from the definition, Equation (1.26),
using the values of the spins s; from our simulation:

G?) (i, ) =-si55) — (8:)(s5) = (si85) —m”. (3.48)
(Here m denotes the expectation value of the magnetization.) In fact, since
our.Ising system is translationally invariant, ¢ (4,7) is dependent only on
the displacement r between the sites i and j, and not on exactly where they
are. In other words, if r; is the position vector of the ith spin, then we should

have
GO (r,r; +1) = GO (x) (3.49)
independent of the value of r;. This means that we can improve our estimate

of the correlation function ¢ (r) by averaging its value over the whole
lattice for all pairs of spins separated by a displacement r:

n@EHwMﬁ@£|ie a§
v

If, as with our Ising model simulation, the system we are simulating has
periodic boundary conditions (see Section 3.1), then G (r) will not die
away for very large values of r. Instead, it will be periodic, dying away for
values of ¥ up to half the width of the lattice, and then building up again to
another maximum when we have gone all the way across the lattice and got
back to the spin we started with.

In order to evaluate G%2 (r) using Equation (3.50) we have to record the
value of every single spin on the lattice at intervals during the simulation.
This is not usually a big problem given the generous amounts of storage space
provided by modern computers. However, if we want to calculate G (r) for
every value of r on the lattice, this kind of direct calculation does take an
amount of time which scales with the number N of spins on the lattice as
N2. As with the calculation of the autocorrelation function in Section 3.3.1,
it actually turns out to be quicker to calculate the Fourier transform of the
correlation function instead.

The spatial Fourier transform G® (k) is defined by

G (k) = Y e GP(r)

NINN.MU MU ek (57T [(5,,;) — m?]

r i, with
rj—ri=r

NIU.AM g—ikTi (si — m) M ST Amu - va

i
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1, .02 : o . .
= mA_m k)%, (3.51) describe in detail how these and other results are arrived at, and discuss
what conclusions we can draw from them.
where §(k) is the Fourier transform of s} = s; —m. In other words, in order ; The first step in performing any Monte Carlo calculation, once we have
to calculate QMS (k), we just need to perform a Fourier transform of the spins & decided.on @m algorithm we are golng to use, Is o write the ooﬁccnma
at a succession of different times throughout the simulation and then feed the : w.nomMmE to wﬁw_mswﬁ that m_.mod.ga.. The ooam” used moH. our gmﬁ.o@o:m
results into Equation (3.51). As in the case of the autocorrelation function simulation of the Ising model is given in Appendix B. It is written in the

computer language C.

of Section 3.2, this can be done using a standard FFT lgorithm. T .
! & algorithm. To get the As a test of whether the program is correct, we have first used it to

correlation function in real space we then have to use the algorithm again to

Fourier transform back, but the whole process still only takes a time which simulate & small 8 x 5 .Hmw:m model for a variety of temperatures between
scales as N log N, and so for the large lattices of today’s Monte Carlo studies : T =0and T =50 with J set mnﬂm_ Amo L. MoH such a small system our
it is usually faster than direct calculation from Equation (3.50).14 : program runs very fast, and the entire simulation only took about a second

Occasionally we also need to calculate the disconnected correlation func- % at each temperature. In Section 1.3 we performed an exact calculation of

the magnetization and specific heat for the 5 x 5 Ising system by directly
evaluating the partition function from a sum over all the states of the system.

tion defined in Section 1.2.1. The equivalent of (3.51) in this case is simply

~(2) § This gives us something to compare our Monte Carlo results with, so that

G (k) = MA_.WE_ 2 (3.52) v we can tell if our program is doing the right thing. At this stage, we are

i not interested in doing a very rigorous calculation, only in performing a

Note that s; and s, differ only by the average magnetization m, which is 77 quick check of the program, so we have not made much effort to ensure the
a constant. As a result, a2 (k) and mwmnv (k) are in fact identical, except equilibration of the system or to measure the correlation time. Instead, we
at k = 0. For this reason, it is often simpler to calculate Wms (k) by first simply ran our program for 20000 Monte Carlo steps per site (i.e., 20000 x
calculating G2) (k) and then just setting the k = 0 component to zero. i 95 = 500000 steps in all), and averaged over the last 18000 of these to

measure the magnetization and the energy. Then we calculated m from
Equation (3.12) and c from Equation (3.15). If the results do not agree
with our exact calculation then it could mean either that there is a problem
, with the program, or that we have not waited long enough in either the
In this section we go through the details of an actual Monte Carlo simulation equilibration or the measurement sections of the simulation. However, as
and demonstrate how the calculation proceeds. The example that we take | shown in Figure 3.7, the numerical results agree rather well with the exact
is that of the simulation of the two-dimensional Ising model on a square ones. Even though we have not calculated the statistical errors on our data im
lattice using the Metropolis algorithm. This system has the advantage that i order to determine the degree of mmSmBm.:n. these results still give us m.:o:mw
‘its properties in the thermodynamic limit are known exactly, following th confidence in our program to proceed with a more thorough calculation on
analytic solution given by Onsager (1944). Comparing the results from our a larger system.
simulation with the exact solution will give us a feel for the sort of accuracy For our large-scale simulation, we have chosen to examine a system of
one can expect to achieve using the Monte Carlo method. Some of the results’ 100 x 100 spins on a square lattice. We started the program with randomly
 have already been presented (see Figures 3.3 and 3.5 for example). Here S@W chosen values of all the spins—the T = oo state of Section 3.1.1—and ran
. o the simulations at a variety of temperatures from T = 0.2 to T = 5.0 in steps
of 0.2, for a total of 25 simulations in all.l® Again we ran our simulations

3.7 An actual calculation

14 Again we should point out that this does not necessarily mean that one should always;
calculate the correlation function this way. As with the calculation of the autocorrelation =
function, using the Fourier transform is a more complicated method than direct calculation
of the correlation function, and if your goal is to get an estimate quickly, and your lattice
is not very large, you may be better advised to go the direct route. However, the Fourier
transform method is more often of use in the present case of the two-point correlation
function, since in order to perform the thermal average appearing in Equations (3.50)
‘and (3.51) we need to repeat the calculation about once every two correlation times
throughout the entire simulation, which might mean doing it a hundred or a thousand
times in one run. Under these circumstances the FFT method may well be advantageous.

15Note that it is not possible to perform a simulation at T' = 0 because the acceptance
ratio, Equation (3.7), for spin flips which increase the energy of the system becomes zero
in this limit. This means that it is not possible to guarantee that the system will come
to equilibrium, because the requirement of ergodicity is violated; there are some states
which it is not possible to get to in a finite number of moves. It is true in general of
thermal Monte Carlo methods that they break down at T = 0, and often they become
very slow close to T = 0. The continuous time Monte Carlo method of Section 2.4 can
sometimes by used to overcome this problem in cases where we are particularly interested
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magnetization m or specific heat ¢

© AN BN

0 1 2 3 4 5

temperature 7

FIGURE 3.7 The magnetization (squares) and specific heat (circles)
per spin of an Ising model in two dimensions on a 5 x 5 square lattice.
The points are the results of the Metropolis Monte Carlo calculation
described in the text. The lines are the exact calculations performed in
Section 1.3, in which we evaluated the partition function by summing
over all the states of the system.

for 20 000 Monte Carlo steps per lattice site. This is a fairly generous first
~ run, and is only possible because we are looking at quite a small system still.
‘. F the case of larger or more complex models, one might well first perform
a shorter run to get a rough measure of the equilibration and correlation
times for the system, before deciding how long a simulation to perform. A
. still more sophisticated approach is to perform a short run and then store
_ the configuration of the spins on the lattice before the program ends. Then
after deciding how long the entire calculation should last on the basis om
- the measurements during that short run, we can pick up exactly where we
left off using the stored configuration, thus saving ourselves the effort of
. equilibrating the system twice.

Taking the data from our 25 simulations at different temperatures, we
first estimate the equilibration times 7.4 at each temperature using the meth-
ods described in Section 3.2. In this case we found that all the equilibration

times were less than about 1000 Monte Carlo steps per site, except for the
simulations performed at T = 2.0 and T = 2.2, which both had equilibration
times on the order of 6000 steps per site. (The reason for this anomaly is
explained in the next section.) Allowing ourselves a margin for error in these
estimates, we therefore took the data from time 2000 onwards as our equi-

in the behaviour of a model close to T = 0.
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150
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3 4 5

0 1 2
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FIGURE 3.8 The correlation time for the 100 x 100 Ising model simu-
lated using the Metropolis algorithm. The correlation time is measured
in Monte Carlo steps per lattice site (i.e., in multiples of 10000 Monte
Carlo steps in this case). The straight lines joining the points are just
to guide the eye.

librium measurements for all the temperatures except the two slower ones,
for which we took the data for times 10000 onwards.

Next we need to estimate how many independent measurements these
data constitute, which means estimating the correlation time. To do this,
we calculate the magnetization autocorrelation function at each temperature
from Equation (3.21), for times t up to 1000. (We must be careful only to use
our equilibrium data for this calculation since the autocorrelation function is
an equilibrium quantity. That is, we should not use the data from the early
part of the simulation during which the system was coming to equilibrium.)
Performing a fit to these functions as in Figure 3.6, we make an estimate
of the correlation time 7 at each temperature. The results are shown in
Figure 3.8. Note the peak in the correlation time around T = 2.2. This
effect is called “critical slowing down”, and we will discuss it in more detail
in Section 3.7.2. Given the length of the simulation tmax and our estimates of
Teq aid 7 for each temperature, we can calculate the number n of independent
measurements to which our simulations correspond using Equation (3.19).

Using these figures we can now calculate the equilibrium properties of
the 100 x 100 Ising model in two dimensions. As an example, we have cal-
culated the magnetization and the specific heat again. Our estimate of the
magnetization is calculated by averaging over the magnetization measure-
ments from the simulation, again excluding the data from the early portion
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FIGURE 3.9 The magnetization per spin of the two-dimensional Ising
model. The points are the results from our Monte Carlo simulation
using the Metropolis algorithm. The errors are actually smaller than
the points in this figure because the calculation is so accurate. The
solid line is the known exact solution for the Ising model on an infinite
two-dimensional square lattice.

Ficure 3.10 The specific heat per spin of the two-dimensional Ising
model calculated by Monte Carlo simulation (points with error bars)
and the exact solution for the same quantity (solid line}. Note how
the error bars get bigger close to the peak in the specific heat. This
phenomenon is discussed in detail in the next section.

the errors on the resulting numbers we could use the blocking method of Sec-

_of the run where the system was not equilibrated. The results are shown ;

. . . . . . tion 3.4.2 to get a rough estimate. Here we are interested in doing a more

in Figure 3.9, along with the known exact solution for the infinite system. . ‘

Om_ow_mﬂbm the mz,moa on the magnetization from Equation (3.37), dwm find mnommm% n&ﬂmmmzmMmmm%MoMM:M:MMMm@MWOMMM Mvmm%m% Mﬂ”ﬂ%ﬂwﬁmmww@ﬁ”awwm
‘that the errors are so small that the error bars would be completely covered ummmwﬁwmm:ﬂmm mow most amacmnmﬁcwm.m oosm.&wqu greater than 100, so by the
by 3.6 points themselves, so we have DOm bothered n.o put them in the fig- . critetion given in Section 3.4.4, the bootstrap method is the more efficient

ure. The agreement between the numerical calculation and the exact one \

i 10 we show our results for the specific heat with
for the infinite lattice is much better than it was for the smaller system in one to use. In Figure 3 ©

- Fi is sti i bars calculated from 200 bootstrap resamplings of the data (giving er-
" Figure 1.1, although there is still some discrepancy between the two. This error . K ¢ rosult
: i te to about 5%). The agreement here with the known exact res
discrepancy arises because the quantity plotted in the figure is in fact th TOTS AcCUrat . ization—
. @égm@m R ﬁww_v of the magnitud mQ.Om th m%Bw. gnetization mbmm soﬁm MU@ m“mwmmm for the specific heat is mxom:mbﬁ‘l.wmgm« ?».E for the wabmdﬁmmaw ﬁro:mmw
BVmbmawNwawon itself; we discuss our reasons for aomcm this in Section 3.7.1 the wqoa are larger, especially in the wnmmﬂo% n.MOmMrMM Mm mwoﬂmw. MMmHMMWm
~when we examine the spontaneous magnetization of the Ising model. particularly interested to know the value of ¢ in € vou

in this region to
sense for us to go back and do a longer run of our program in
o&oﬁmmummcww MWM M%me MMMdMWm MMWAMWMN@OMMMMHMM%WMwanﬂwoﬂmuﬁ MonmHWM get more accurate data. For example, if we wanted to calculate the entropy

i : difference from one side of the peak to the other using Equation (3.45), then
act. whereas the Monte Carlo calculation on the 100 x 100 system is not. ; . . . :
, mo,wc\méﬁ the Monte Carlo calculation still gives a better ommsmﬂm of the meo error bars in this HomﬂOSQw«oEM HMMMMMMWM—MMMMM@“MMMMMMM%MM MMM
magnetization of the infinite system. The errors due to statistical fluctua- might well benefit Mnoa expending
tions in our measurements of the magnetization are much smaller than the more accurate results.
inaccuracy of working with a tiny 5 x 5 system.
Using the energy measurements from our simulation, we have also calcu-
- lated the specific heat for our Ising model from Equation (3.15). To calculate
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-3.7.1 The phase transition

It is :ow“ nmm:%.gm intention of this book to discuss the properties of the Isin
model in detail, or the properties of any other model. However, there are a’

few things about the Ising model which we need to look into in a little more ;

detail in order to understand the strengths and weaknesses of the Metropolis®

algorithm, and to explain why other algorithms may be better for certain .

calculations.
If we look at Figures 3.9 and 3.10, the most obvious feature that strikes

us is the behaviour of the model around temperature T = 2.2 or so. The?

results .mwoés in Figure 3.9 indicate that above this temperature the mean
.EmmeENQSOd per site m is quite small, whereas below it the magnetization’
is definitely non-zero and for the most part quite close to its maximum
HV.Omm.mEm value of 1. This seems like a sensible way for the model to behave
since we know (see Section 3.1.1) that the T = oo state is one in which mm
the spins are randomly oriented up or down so that the net magnetization
will be zero on average, and we know that the T = 0 state is one in which
all the spins line up with one another, either all up or all down, so that the
magnetization per site is either +1 or —1. If we only had results for a small

Ising system to go by, like the ones depicted in Figure 3.7, we might imagine

that the true behaviour of the system was simply that the magnetization |

rose smoothly from zero in the T — oo limit to 1 as the temperature tends

to zero. However, our results for the larger 100 x 100 system indicate that ;
the transition from small m to large m becomes sharper as we go to larger
.systems, and in fact we know in the case of this particular model, because -
we have an exact solution, that the change from one regime to the other is
wogm:% infinitely sharp in the thermodynamic limit. This kind of change
is called a phase transition. The Ising model is known to have a phase

“transition in two or more dimensions. The two regimes we observe are called
mwm phases of the model. The phase transition between them takes place at
a temperature 1., which we call the critical temperature, whose value in
@m particular case of the two-dimensional Ising model is known to be

- Y
log(1 + v/2)

>,Uo.<m this temperature the system is in the paramagnetic phase, in which
the average magnetization is zero. Below it, the system is in the ferromag-
bm.ﬁn phase and develops a spontaneous magnetization (i.e., most of the
spins align one way or the other and the magnetization becomes non-zero all
of its own accord without the application of a magnetic field to the model). |
This spontaneous magnetization rises from zero at the phase transition to 1
.:E.n% at absolute zero. The magnetization is referred to as the order pa-
rameter of the Ising model because of this behaviour. In general, an order
parameter is any quantity which is zero on one side of a phase transition and

T, ~ 2.269.J. (3.53)
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non-zero on the other. A phase transition in which the order parameter is
continuous at Ty, as it is here, is called a continuous phase transition.

In fact, to be strictly correct, the mean magnetization of the Ising model
below the critical temperature is still zero, since the system is equally happy
to have most of its spins pointing either down or up. Thus if we average over a
long period of time we will find that the magnetization is close to +1 half the
time and close to —1 for the other half, with occasional transitions between
the two, so that the average is still close to zero. However, the average
of the magnitude |m/| of the magnetization will be close to +1, whereas it
will be close to zero above the phase transition. In Figure 3.9 we therefore
actually plotted the average of |m|, and not m. This explains why the
magnetization above the transition temperature is still slightly greater than
zero. The average magnetization in this phase is definitely zero (give or
take the statistical error) but the average of the magnitude of m is always
greater than zero, since we are taking the average of a number which is never
negative. Still, as we go to the thermodynamic limit we expect this quantity
to tend to zero, so that the numerical result and the exact solution should
agree.'6

We can look in detail at what happens to the spins in our Ising system as
we pass through the phase transition from high to low temperatures by ex-
amining pictures such as those in Figure 3.2. At high temperatures the spins
are random and uncorrelated, but as the temperature is lowered the interac-
tions between them encourage nearby spins to point in the same direction,
giving rise to correlations in the system. Groups of adjacent spins which are
correlated in this fashion and tend to point in the same direction are called
clusters.l” As we approach Te, the typical size £ of these clusters—also
called the correlation length—diverges, so that when we are precisely at
the transition, we may encounter arbitrarily large areas in which the spins
are pointing mostly up or mostly down. Then, as we pass below the tran-
sition temperature, the system spontaneously chooses to have the majority
of its spins in either the up or the down direction, and develops a non-zero
magnetization in that direction. Which direction it chooses depends solely

16T his also provides an explanation of why the agreement between the analytic solution
and the Monte Carlo calculation was better for the specific heat, Figure 3.10, than it
was for the magnetization. The process of taking the mean of the magnitude {m| of
the magnetization means that we consistently overestimate the magnetization above the
critical temperature, and in fact this problem extends to temperatures a little below T¢
as well (see Figure 3.9). No such adjustments are necessary when calculating the specific
heat, and as a result our simulation agrees much better with the known values for ¢, even
though the error bars are larger in this case.

17 A number of different mathematical definitions of a cluster are possible. Some of
them require that all spins in the cluster point in the same direction whilst others are
less strict. We discuss these definitions in detail in the next chapter, particularly in
Sections 4.2 and 4.4.2.
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on the random details of the thermal fluctuations it was going through as
we passed the critical temperature, and so is itself completely random. As
the temperature drops further towards T’ = 0, more and more of the spins
line up in the same direction, and eventually as T — 0 we get im] = 1.

The study of phase transitions is an entire subject in itself and we refer :
the interested reader to other sources for more details of this interesting field. .
For our purposes the brief summary given above will be enough.

3.7.2 Critical fluctuations and critical slowing down

We are interested in the behaviour of the Ising model in the region close
to T.. This region is called the critical region, and the processes typical -
of the critical region are called critical phenomena. As we mentioned, -
the system tends to form into large clusters of predominantly up- or down- .
pointing spins as we approach the critical temperature from above. These -
clusters contribute significantly to both the magnetization and the energy of
the system, so that, as they flip from one orientation to another, they produce -
large fluctuations in m and E, often called critical fluctuations. As the
typical size € of the clusters diverges as T — T,, the size of the m:oﬁcmﬁosmm
does too. And since fluctuations in m and E are related to the Bmmsmd.sm
susceptibility and the specific heat through Equations (3.15) and (3.16), w !
expect to get divergences in these quantities at T, also. This is what we se
" in Figure 3.10. These divergences are some of the most interesting of critical
phenomena, and a lot of effort, particularly using Monte Carlo methods; has ?
been devoted to investigating their exact nature. Many Monte Carlo studies {
"of many different models have focused exclusively on the critical region to#
the exclusion of all else. Unfortunately, it is in precisely this region that our “
Metropolis algorithm is least accurate. :

There are two reasons for this. The first has to do with the critical
fluctuations. The statistical errors in the measured values of quantities like
the magnetization and the internal energy are proportional to the size of ¢
“these critical fluctuations (see Section 3.4) and so grow as we approach Tp. &
In a finite-sized system like the ones we study in our simulations, the siz
of the fluctuations never actually diverges—that can only happen in th
thermodynamic limit—but they can become very large, and this makes f
_large statistical errors in the measured quantities.
What can we do about this? Well, recall that the error on, for exam- :
ple, the magnetization m indeed increases with the size of the magnetization]
fluctuations, but it also decreases with the number of independent measurét |
“ments of m that we make during our simulation (see Equation (3.37)). Thu
in order to reduce the error bars on measurements close to T., we need to rufi-
our program for longer, so that we get a larger number of measurements.

This however, is where the other problem with the Metropolis algorithm
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comes in. As we saw in Figure 3.8, the correlation time 7 of the simulation
is also large in the region around T¢. In fact, like the susceptibility and the
specific heat, the correlation time actually diverges at T, in the thermody-
namic limit. For the finite-sized systems of our Monte Carlo simulations 7
does not diverge, but it can still become very large in the critical region,
and a large correlation time means that the number of independent mea-
surements we can extract from a simulation of a certain length is small (see
Equation (3.19)). This effect on its own would increase the size of the errors
on measurements from our simulation, even without the large critical fluctu-
ations. The combination of both effects is particularly unfortunate, because
it means that in order to increase the number of independent measurements
we make during our simulation, we have to perform a much longer run of
the program; the computer time necessary to reduce the error bars to a size
comparable with those away from T increases very rapidly as we approach
the phase transition.

The critical fluctuations which increase the size of our error bars are
an innate physical feature of the Ising model. Any Monte Carlo algorithm
which correctly samples the Boltzmann distribution will also give critical
Auctuations. There is nothing we can do to change our algorithm which will
reduce this source of error. However, the same is not true of the increase in
correlation time. This effect, known as critical slowing down, is a property
of the Monte Carlo algorithm we have used to perform the simulation, but
not of the Ising model in general. Different algorithms can have different
values of the correlation time at any given temperature, and the degree to
which the correlation time grows as we approach T, if it grows at all, depends
on the precise details of the algorithm. Therefore, if we are particularly
interested in the behaviour of a model in the critical region, it may be possible
to construct an algorithm which suffers less from critical slowing down than
does the Metropolis algorithm, or even eliminates it completely, allowing us
to achieve much greater accuracy for our measurements. In the next chapter
we look at a number of other algorithms which do just this and which allow
us to study the critical region of the Ising model more accurately.

Problems

3.1 Derive the appropriate generalization of Equation (3.10) for a simulation
of an Ising model with non-zero external magnetic field B.

3.2 Suppose we have a set of n measurements 1 ...Zn of a real quantity
z. Find an approximate expression for the error on our best estimate of the
mean of their squares. Take the numbers below and estimate this error.
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20.27 19.61 20.06 20.73
20.09 20.68 19.37 20.40
19.95 20.55 19.64 19.94

Now estimate the same quantity for the same set of numbers using the
jackknife method of Section 3.4.4.

3.3 In this chapter we described methods for calculating a variety of quan-
tities from Monte Carlo data, including internal energies, specific heats and
entropies. Suggest a way in which we might measure the partition function
using data from a Monte Carlo simulation.

3.4 .<§%8 a computer program to carry out a Metropolis Monte Carlo sim-
ulation of the one-dimensional Ising model in zero field. Use it to calculate

the internal energy of the model for a variety of temperatures and check the

results against the analytic solution from Problem 1.4.

it

4

Other algorithms for the Ising
model

In the last chapter we saw that the Metropolis algorithm with single-spin-
flip dynamics is an excellent Monte Carlo algorithm for simulating the Ising
model when we are interested in temperatures well away from the critical
temperature T,.. However, as we approach the critical temperature, the
combination of large critical fluctuations and long correlation time makes
the errors on measured quantities grow enormously. As we pointed out,
there is little to be done about the critical fluctuations, since these are an
intrinsic property of the model near its phase transition (and are, what'’s
more, precisely the kind of interesting physical effect that we want to study
with our simulations). On the other hand, the increase in the correlation
time close to the phase transition is a function of the particular algorithm
we are using—the Metropolis algorithm in this case—and it turns out that
by using different algorithms we can greatly reduce this undesirable effect.
In the first part of this chapter we will study one of the most widely used
and successful such algorithms, the Wolff algorithm. Before introducing the
algorithm however, we need to define a few terms.

4.1 Critical exponents and their measurement

As discussed in Section 3.7.1, the spins of an Ising model in equilibrium group
themselves into clusters of a typical size &, called the correlation length,
and this correlation length diverges as the temperature approaches Tt. Let
us define a dimensionless parameter t, called the reduced temperature,
which measures how far away we are from Te:
k T-T.

t = .
Te

(4.1)




