30 Chapter 1: Introduction

are allowed to move back and forward between the boxes under the influence

of thermal excitations from a reservoir at temperature 7'. Find the partition

function for this system and then use this result to calculate the internal
energy.

1.4 Solve the Ising model, whose Hamiltonian is given in Equation (1.30),
in one dimension for the case where B = 0 as follows. Define a new set
of variables o; which take values 0 and 1 according to o; = wﬁ — 8;8i+1)
and rewrite the Hamiltonian in terms of these variables for a system of N
spins with periodic boundary conditions. Show that the resulting system
is equivalent to the one studied in Problem 1.3 in the limit of large N and
hence calculate the internal energy as a function of temperature.

2

The principles of equilibrium
thermal Monte Carlo simulation

In. Section 1.3.1 we looked briefly at the general ideas behind equilibrium
thermal Monte Carlo simulations. In this chapter we discuss these ideas
in more detail in preparation for the discussion in the following chapters of
a variety of specific algorithms for use with specific problems. The three
crucial ideas that we introduce in this chapter are “importance sampling”,
“detailed balance” and “acceptance ratios”. If you know what these phrases
mean, you can understand most of the thermal Monte Carlo simulations that
have been performed in the last thirty years.

2.1 The estimator ,

The usual goal in the Monte Carlo simulation of a thermal system is the
calculation of the expectation value (Q) of some observable quantity Q,
such as the internal energy in a model of a gas, or the magnetization in a
magnetic model. As we showed in Section 1.3, the ideal route to calculating
such an expectation, that of averaging the quantity of interest over all states
u of the system, weighting each with its own Boltzmann probability

>, Que PP
Q) ==&—
Mt. e mm:

(2.1)

is only tractable in the very smallest of systems. In larger systems, the best
we can do is average over some subset of the states, though this necessarily
introduces some inaccuracy into the calculation. Monte Carlo techniques
work by choosing a subset of states at random from some probability distri-
bution p, which we specify. Suppose we choose M such states {p1..-pm}

32 Chapter 2: Equilibrium thermal Monte Carlo simulations

Our best estimate of the quantity @ will then be given by

M -1 —
_ MUS.HH @Eﬁtmm PEu;

M -1 ~pE,.
D j=1Pus €

Qm (2.2)

Q2 is called the estimator of Q. It has the property that, as the number M
of states sampled increases, it becomes a more and more accurate estimate
of (@), and when M — oo we have Qn = (Q).

The question we would like to answer now is how should we choose our
M states in order that Qs be an accurate estimate of {(Q)? In other words,
how should we choose the probability distribution p,? The simplest choice
is to pick all states with equal probability; in other words make all p,, equal.
Substituting this choice into Equation (2.2), we get

' M _
T QuePEn

MJQ.?%H e~ BEn;

QM (2.3)

It turns out however, that this is usually a rather poor choice to make.
In most numerical calculations it is only possible to sample a very small
fraction of the total number of states. Consider, for example, the Ising
model of Section 1.2.2 again. A small three-dimensional cubic system of
10 x 10 x 10 Ising spins would have 2990 ~ 103% states, and a typical
numerical calculation could only hope'to sample up to about 10® of those in
a few hours on a good computer, which would mean we were only sampling
one in every 10292 states of the system, a very small fraction indeed. The
estimator given above is normally a poor guide to the value of (Q) under
these circumstances. The reason is that one or both of the sums appearing
in Equation (2.1) may be dominated by a small number of states, with all
the other states, the vast majority, contributing a negligible amount even
when we add them all ﬁommgmm. This effect is often especially obvious at
low temperatures, where these sums may be dominated by a hundred states,
or ten states, or even one state, because at low temperatures there is not
enough thermal energy to lift the system into the higher excited states, and
so it spends almost all of its time sitting in the ground state, or one of the
lowest of the excited states. In the example described above, the chances of
one of the 10% random states we sample in our simulation being the ground
state are one in 10%%2, which means there is essentially no chance of our
picking it, which makes Qs a very inaccurate estimate of {(Q) if the sums
are dominated by the contribution from this state.

~ On the other hand, if we had some way of knowing which states made
the important contributions to the sums in Equation (2.1) and if we could
pick our sample of M states from just those states and ignore all the others,
‘we could get a very good estimate of (@) with only a small number of terms.
This is the essence of the idea behind thermal Monte Carlo methods. The

2.2 Importance sampling , 33

technique for picking out the important states from amongst the very large
number of possibilities is called importance sampling.

2.2 Importance mmaﬁ_zsm

As discussed in Section 1.1, we can regard an expectation value as a time
average over the states that a system passes through during the course of
s measurement. We do not assume that the system passes through every
state during the measurement, even though every state appears in the sums
of Equation (2.1). When you count how many states a typical system has
you realize that this would never be possible. For instance, consider again
the example we took in the last chapter of a litre container of gas at room
temperature and atmospheric pressure. Such a system contains on the order
of 1022 molecules. Typical speeds for these molecules are in the region of
100 ms~!, giving them a de Broglie wavelength of around 107'® m. Each
molecule will then have about 10?7 different quantum states within the one
litre box, and the complete gas will have around (1027)10* states, which is
a spectacularly large number.! The molecules will change from one state to
another when they undergo collisions with one another or with the walls of
the container, which they do at a rate of about 109 collisions per second, or
103! changes of state per second for the whole gas. At this rate, it will take
about 101%*° times the lifetime of the universe for our litre of gas to move
through every possible state. Clearly then, our laboratory systems are only
sampling the tiniest portion of their state spaces during the time that we
conduct our experiments on them. In effect, real systems are carrying out a
sort of Monte Carlo calculation of their own properties; they are “analogue
computers” which evaluate expectations by taking a small but representative
sample of their own states and averaging over that sample.? So it should not
gome as a great surprise to learn that we can also perform a reasonable cal-
culation of the properties of a system using a simulation which only samples
a small fraction of its states.

In fact, our calculations are often significantly better than this simple
argument suggests. In Section 1.2.1 we showed that the range of energies of
the states sampled by a typical system is very small compared with the total

! Actually, this is probably an overestimate, since it counts states which are classically
distinguishable but quantum mechanically identical. For the purpose of the present rough
estimation however, it will do fine.

2There are some systems which, because they have certain conservation laws, will
not in fact sample their state spaces representatively, and this can lead to discrepancies
between theory and experiment. Special Monte Carlo techniques exist for simulating
these “conservative” systems, and we will touch on one or two of them in the coming
chapters. For the moment, however, we will make the assumption that our system takes
a representative sample of its own states.

34 Chapter 2: Equilibrium thermal Monte Carlo simulations

energy of the system—the ratio was about 10~2° in the case of our litre of gas
for instance. Similar arguments can be used to show that systems mmEEm
Very narrow ranges of other quantities as well. The reason for this, as we
saw, is that the system is not sampling all states with equal Eovm_u:mﬁ% but
instead sampling them according to the Boltzmann probability &mdivc,EOb
Equation (1.5). If we can mimic this effect in our simulations, we can mx@_o#“
these narrow ranges of energy and other quantities to make our estimates
of such quantities very accurate. For this reason, we normally try to take a
sample of the states of the system in which the likelihood of any particular
one appearing is proportional to its Boltzmann weight. This is the most
common form of importance sampling, and most of the algorithms in this
book make use of this idea in one form or another.

Our strategy then is this: instead of picking our M states in such a way
that every state of the system is as likely to get chosen as every other, we
pick them so that the probability that a particular state u gets oWOmm,c is
Py = Z~le PEu. Then our estimator for (@), Equation (2.2), becomes just

1 M .

Notice that the Boltzmann factors have now cancelled out of the estimator
top and bottom, leaving a particularly simple expression. This definition om.
Q@ works much better than (2.3), especially when the system is spending
the majority of its time in a small number of states (such as, for example,

the lowest-lying ones when we are at low temperatures), since these will be -

precisely the states that we pick most often, and the relative frequency with
which we pick them will exactly correspond to the amount of time the real
system would spend in those states.

The only remaining question is how exactly we pick our states so that
each one appears with its correct Boltzmann probability. This is by no means
a simple task. In the remainder of this chapter we describe the standard
solution to the problem, which makes use of a “Markov process”.

.w..w.uv Markov processes

The nﬁoww part of performing a Monte Carlo simulation is the generation of
an appropriate random set of states according to the Boltzmann probability
&m,eawcao:. For a start, one cannot simply choose states at random and
accept or reject them with a probability proportional to e=#Ex. That would
be no better than our original scheme of sampling states at random; we
would end up rejecting virtually all states, since the probabilities for their
acceptance would be exponentially small. Instead, almost all Monte Carlo

schemes rely on Markov processes as the generating engine for the set of
states used.

2.2 Importance sampling) , 35

For our purposes, a Markov process is a mechanism which, given a system
in one state p, generates a new state of that system v. It does so in a
random fashion; it will not generate the same new state every time it is
given the initial state u. The probability of generating the state v given p is
called the transition probability P(u — v) for the transition from p to v,
and for a true Markov process all the transition probabilities should satisfy
two conditions: (1) they should not vary over time, and (2) they should
depend only on the properties of the current states u and v, and not on any
other states the system has passed through. These conditions mean that the
probability of the Markov process generating the state v on being fed the
state p is the same every time it is fed the state p, irrespective of anything
else that has happened. The transition probabilities P(u — v) must also
satisfy the constraint

S Pu—v)=1, (2.5)

since the Markov process must generate some state v when handed a system
in the state u. Note however, that the transition probability Py — u),
which is the probability that the new state generated will be the same as
the old one, need not be zero. This amounts to saying there may be a finite
probability that the Markov process will just stay in state u.

Tn a Monte Carlo simulation we use a Markov process repeatedly to gen-
erate a Markov chain of states. Starting with a state u, we use the process
to generate a new one v, and then we feed that state into the process to
generate another A, and so on. The Markov process is chosen specially so
that when it is run for long enough starting from any state of the system it
will eventually produce a succession of states which appear with probabili-
ties given by the Boltzmann distribution. (We call the process of reaching
the Boltzmann distribution “coming to equilibrium”, since it is exactly the
process that a real system goes through with its “analogue computer” as it
reaches equilibrium at the ambient temperature.) In order to achieve this,
we place two further conditions on our Markov process, in addition to the
ones specified above, the conditions of “ergodicity” and “detailed balance”

2.2.2 Ergodicity

The condition of ergodicity is the requirement that it should be possible
for our Markov process to reach any state of the system from any other state,
if we run it for long enough. This is necessary to achieve our stated goal of
generating states with their correct Boltzmann probabilities. Every state v
appears with some non-zero probability p, in the Boltzmann distribution,
and if that state were inaccessible from another state u no matter how long
we continue our process for, then our goal is thwarted if we start in state u:
the probability of finding v in our Markov chain of states will be zero, and

36 Chapter 2: Equilibrium thermal Monte Carlo simulations

not p, as we require it to be.

The condition of ergodicity tells us that we are allowed to make some of
the transition probabilities of our Markov process zero, but that there must
.be at least one path of non-zero transition probabilities between any two
states that we pick. In practice, most Monte Carlo algorithms set almost all
of the transition probabilities to zero, and we must be careful that in so doing
we do not create an algorithm which violates ergodicity. For most of the
algorithms we describe in this book we will explicitly prove that ergodicity
is satisfied before making use of the algorithm. '

2.2.3 Detailed balance

The other condition we place on our Markov process is the condition of
detailed balance. This condition is the one which ensures that it is the
Boltzmann probability distribution which we generate after our system has
come to equilibrium, rather than any other distribution. Its derivation is
quite subtle. Consider first what it means to say that the system is in equi-
librium. The crucial defining condition is that the rate at which the system
makes transitions into and out of any state u must be equal. Mathematically
we can express this as3

> puP(p—v) =) pP—np). (2.6)

Making use of the sum rule, Equation (2.5), we can simplify this to

pu=» PP —p). (2.7)

For any set of transition probabilities satisfying this equation, the probability
distribution p, will be an equilibrium of the dynamics of the Markov process.
Unfortunately, however, simply satisfying this equation is not sufficient to
guarantee that the probability distribution will tend to p, from any state of
the system if we run the process for long enough. We can demonstrate this
as follows. :

The transition probabilities P(u — v) can be thought of as the elements
~ of a matrix P. This matrix is called the Markov matrix or the stochastic
matrix for the Markov process. Let us return to the notation of Section 1.1,
in which we denoted by w,(¢), the probability that our system is in a state
" w at time t. If we measure time in steps along our Markov chain, then the

. 3This equation is essentially just a discrete-time version of the one we would get if we
were to set the derivative in the master equation, Equation (1.1), to zero.

it

S

2.2 Importance sampling , 37

probability w, (t + 1) of being in state v at time ¢ + 1 is given byt

w(t+1) =Y P(u— v)wu(t). (2.8)
-

In matrix notation, this becomes
w(t+1) =P w(t), (2.9)

where w(t) is the vector whose elements are the weights wy, (t). If the Markov
process reaches a simple equilibrium state w(oo) as t — oo, then that state
satisfies :
w(oo) = P - w(c0). (2.10)

However, it is also possible for the process to reach a dynamic equilibrium
in which the probability distribution w Totates around a number of different
values. Such a rotation is called a limit cycle. In this case w(co) would
satisfy

w(oo) = P™ - w(o0), (2.11)

where n is the length of the limit cycle. If we choose our transition prob-
abilities (or equivalently our Markov matrix) to satisfy Equation (2.7) we
guarantee that the Markov chain will have a simple equilibrium probabil-
ity distribution p,, but it may also have any number of limit cycles of the
form (2.11). This means that there is no guarantee that the actual states
generated will have anything like the desired probability distribution.

We get around this problem by applying an additional condition to our
transition probabilities thus: :

puP(p—v)=p,Plv — 1. (2.12)

This is the condition of detailed balance. It is clear that any set of transition
probabilities which satisfy this condition also satisty Equation (2.6). (To
prove it, simply sum both sides of Equation (2.12) over v.) We can also
show that this condition eliminates limit cycles. To see this, look first at the
left-hand side of the equation, which is-the probability of being in a state
1 multiplied by the probability of making a transition from that state to
another state v. In other words, it is the overall rate at which transitions
from 4 to v happen in our system. The right-hand side is the overall rate
for the reverse transition. The condition of detailed balance tells us that on
average the system should go from u to v just as often as it goes from v to
. In a limit cycle, in which the probability of occupation of some or all of
the states changes in a cyclic fashion, there must be states for which this

4This equation is also closely related to Equation (1.1). The reader may like to work
out how the one can be transformed into the other. .

38 Chapter 2: Equilibrium thermal Monte Carlo simulations

‘condition is violated on any particular step of the Markov chain; in order for

the probability of occupation of a particular state to increase, for instance,
there must be more transitions into that state than out of it, on average.
'The condition of detailed balance forbids dynamics of this kind and hence
forbids limit cycles.

Once we remove the limit cycles in this way, it is straightforward to
show that the system will always tend to the probability distribution Py 88
t — co. Ast — oo, w(t) will tend exponentially towards the eigenvector
corresponding to the largest eigenvalue of P. This may be obvious to you if
you are familiar with stochastic matrices. If not, we prove it in Section 3.3.2.
For the moment, let us take it as given. Looking at Equation (2.10) we
see that the largest eigenvalue of the Markov matrix must in fact be one.’
If limit cycles of the form (2.11) were present, then we could also have
eigenvalues which are complex roots of one, but the condition of detailed
balance prevents this from happening. Now look back at Equation (2.7)
again. We can express this equation in matrix notation as

p=P-p. : (2-13)

In other words, if Equation (2.7) (or equivalently the condition of detailed
balance) holds for our Markov process, then the vector p whose elements
are the probabilities p, is precisely the one correctly normalized eigenvector
of the Markov matrix which has eigenvalue one. Putting this together with
Equation (2.10) we see that the equilibrium probability distribution over
states w(0o) is none other than p, and hence w(t) must tend exponentially
to p ast — oco.
There is another reason why detailed balance makes sense for Monte
Carlo simulations: .the “analogue computers” which constitute the real phys-
"ical systems we are trying to mimic almost always obey the condition of
detailed balance. The reason is that they are based on standard quantum
or classical mechanics, which is time-reversal symmetric. If they did not
obey detailed balance, then in equilibrium they could have one or more limit
cycles around which the system passes in one particular direction. If we take
such a system and reverse it in time, the motion around this cycle is also re-
versed, and it becomes clear that the dynamics of the system in equilibrium
is not the same forward as it is in reverse. Such a violation of time-reversal
symmetry is forbidden for most systems, implying that they must satisfy de-
- tailed balance. Although this does not mean that we are necessarily obliged

5 All Markov matrices have at least one eigenvector with corresponding eigenvalue one,

_'a fact which is easily proven since Equation (2.5) implies that the vector (1,1,1,...) is a

left eigenvector of P with eigenvalue one. It is possible to have more than one eigenvector

with eigenvalue one if the states of the system divide into two or more mutually inaccessible

subsets. However, if the condition of ergodicity is satisfied then such subsets are forbidden
and hence there is only one such eigenvector.

2.2 Importance sampling . , 39

to enforce detailed balance in our simulations as well, it is helpful if we do,
because it makes the behaviour of our model system more similar to that of
the real one we are trying to understand.

So, we have shown that we can arrange for the probability distribution
of states generated by our Markov process to tend to any distribution p,
we please by choosing a set of transition probabilities which satisfy Equa-
tion (2.12). Given that we wish the equilibrium distribution to be the Boltz-
mann. distribution,® clearly we want to choose the values of p, to be the

" Boltzmann probabilities, Equation (1.5). The detailed balance equation then

tells us that the transition probabilities should satisfy

NUAK — tv _ Dy — mlmﬂm_\.lmtv. AN.HAV
Plv—pu) pu

This equation and Equation (2.5) are the constraints on our choice m.vm .wa-
sition probabilities P(u — v). If we satisfy these, as well as the condition of
ergodicity, then the equilibrium distribution of states in our zwnw.ow process
will be the Boltzmann distribution. Given a suitable set of transition prob-
abilities, our plan is then to write a computer program which implements
the Markov process corresponding to these transition probabilities so as to
generate a chain of states. After waiting a suitable length of time” to allow
the probability distribution of states wy(t) to get sufficiently oﬁmm to the
Boltzmann distribution, we average the observable Q) that we are interested
in over M states and we have calculated the estimator Qn defined in meﬁ.
tion (2.4). A number of refinements on this outline are vOm%Em and we will
discuss some of those in the remainder of this chapter and in later chapters
of the book, but this is the basic principle on which virtually all modern
equilibrium Monte Carlo calculations are based.

Our constraints still leave us a good deal of freedom over how we choose
the transition probabilities. There are many ways in which to satisfy them.
One simple choice for example is

P(u — v) x e 3B B, (2.15)

although as we will show in Section 3.1 this choice is not a very good one.
There are some other choices which are known to work well in many cases,
such as the “Metropolis algorithm” proposed by Metropolis and o@-égw@m
in 1953, and we will discuss the most important of these in the coming chap-
ters. However, it must be stressed—and this is one of the most important

6Qccasionally, in fact, we want to generate equilibrium distributions other than the
Boltzmann distribution. An example is the entropic sampling m_moiﬂﬁu.om .mwnﬁoz .m.w.
In this case the arguments here still apply. We simply feed our required distribution into
the condition of detailed balance.

TExactly how long we have to wait can be a difficult thing to decide. A number of
possible criteria are discussed in Section 3.2.

40 Chapter 2: Equilibrium thermal Monte Carlo simulations

things this book has to say—that the standard algorithms are very rarely
the best ones for solving new problems with. In most cases they will work,
and in some cases they will even give quite good answers, but you can almost
always do a better job by giving a little extra thought to choosing the best
set of transition probabilities to comstruct an algorithm that will answer
the particular questions that you are interested in. A purpose-built algo-
rithm can often give a much faster simulation than an equivalent standard
algorithm, and the improvement in efficiency can easily make the difference
between finding an answer to a problem and not finding one.

2.3 Acceptance ratios

Our little summary above makes rather light work of the problems of con-
structing a Monte Carlo algorithm. Given a desired set of transition proba-
bilities P(p — v) satisfying the conditions (2.5) and (2.14), we say, we sim-
ply concoct some Markov process that generates states with exactly those
transition probabilities, and presto! we produce a string of states of our
system with exactly their correct Boltzmann probabilities. However, it is
often very far from obvious what the appropriate Markov process is that has
the required transition probabilities, and finding one can be a haphazard,
trial-and-error process. For some problems we can use known algorithms
such as the Metropolis method (see Section 3.1), but for many problems the
-standard methods are far from ideal, and we will do much better if we can
tailor a new algorithm to our specific needs. But though we may be able to
" suggest many candidate Markov processes—different ways of creating a new
state v from an old one p—still we may not find one which gives exactly
‘the right set of transition probabilities. The good news however is that we
" don’t have to. In fact it turns out that we can choose any algorithm we
like for generating the new states, and still have our desired set of transition
_probabilities, by introducing something called an acceptance ratio. The
idea behind the trick is this.
- We mentioned in Section 2.2.1 that we are allowed to make the “stay-at-
home” transition probability P(u — p) non-zero if we want. If we set v = y
"in Equation (2.14), we get the simple tautology 1 = 1, which means that
" the condition of detailed balance is always satisfied for P(u — p), no matter
what value we choose for it. This gives us some flexibility about how we
choose the other transition probabilities with y # v. For a start, it means
‘that we can adjust the value of any P(u — v) and keep the sum rule (2.5)
satisfied, by simply compensating for that adjustment with an equal but
opposite adjustment of P(ix — u). The only thing we need to watch is
that P(u — u) never passes out of its allowed range between zero and one.
" If we make an adjustment like this in P(u — v), we can also arrange for
"Equation (2.14) to remain satisfied, by simultaneously making a change in

2.3 Acceptance ratios A : 41

P(v —), so that the ratio of the two is preserved.

Tt turns out that these considerations actually give us enough freedom
that we can make the transition probabilities take any set of values we like
by tweaking the values of the probabilities P(u —). To see this, we break
the transition probability down into two parts:

P(p—v)=gp—v)Ap —v). (2.16)

The quantity g(u — v) is the selection probability, which is the proba-
bility, given an initial state y, that our algorithm will generate a new target
state v, and A(u — v) is the acccptance ratio (sometimes also called the
“geceptance probability”). The acceptance ratio says that if we start offina
state p and our algorithm generates a new state v from it, we should accept
that state and change our system to the new state v a fraction of the time
A(u — v). The rest of the time we should just stay in the state u. We are
free to choose the acceptance ratio to be any number we like between zero
and one; choosing it to be zero for all transitions is equivalent to choosing
P(i — p) = 1, which is the largest value it can take, and means that we
will never leave the state u. (Not a very desirable situation. We would never
choose an acceptance ratio of zero for an actual calculation.)

This gives us complete freedom about how we choose ﬁgm.mmwmoﬁg prob-
abilities g(u — v), since the constraint (2.14) only fixes the ratio

Pu—v) _guov)Alp—v) (2.17)
Pv—u) glv—pAlv—u

The ratio A(u — v)/A(v — p) can take any value we choose between zero
and infinity, which means that both g(u — v) and g(v — 1) can take any
values we like.

Our other constraint, the sum rule of Equation (2.5), is still satisfied,
since the system must end up in some state after each step in the Markov
chain, even if that state is just the state we started in.

So, in order to create our Monte Carlo algorithm what we mn?w:% do
is think up an algorithm which generates random new states v given old
ones y, with some set of probabilities g(y — v), and Emb we accept or
reject those states with acceptance ratios Alp — v) SU:.& we choose to
satisfy Equation (2.17). This will then satisfy all the requirements for the
transition probabilities, and so produce a string of states which, when the
algorithm reaches equilibrium, will each appear with their correct Boltzmann
probability.

This all seems delightful, but there is a catch which we must always
bear in mind, and which is one of the most important considerations in the
design of Monte Carlo algorithms. If the acceptance ratios mOn. our moves
are low, then the algorithm will on most time steps simply stay in the state

42 , Chapter 2: Equilibrium thermal Monte Carlo simulations

~that it is in, and not go anywhere. The step on which it actually accepts a
change to a new state will be rare, and this is wasteful of time. We want an
algorithm that moves nimbly about state space and samples a wide selection

~of different states. We don’t want to take a million time steps and find that
our algorithm has only sampled a dozen states. The solution to this problem
is to make the acceptance ratio as close to unity as possible. One way to do
this is to note that Equation (2.17) fixes only the ratio A(p — v)/A(v — u)
of the acceptance ratios for the transitions in either direction between any
two states. Thus we are free to multiply both A(x —'v) and A(v — u) by
the same factor, and the equation will still be obeyed. The only constraint is
that both acceptance ratios should remain between zero and one. In practice
then, what we do is to set the larger of the two acceptance ratios to one,
and have the other one take whatever value is necessary for the ratio of the
two to satisfy (2.17). This ensures that the acceptance ratios will be as large
as they can be while still satisfying the relevant conditions, and indeed that
the ratio in one direction will be unity, which means that in that direction
at least, moves will always be accepted.

However, the best thing we can do to keep the acceptance ratios large
is to try to embody in the selection probabilities g{x — v) as much as
we can of the dependence of P(u — v) on the characteristics of the states
and v, and put as little as we can in the acceptance ratio. The ideal
algorithm is one in which the new states are selected with exactly the correct
transition probabilities all the time, and the acceptance ratio is always one.
A good algorithm is one in which the acceptance probability is usually close
‘to one. Much of the effort invested in the algorithms described in this book
is directed at making the acceptance ratios large.

2.4 | Continuous time Monte Carlo

There is a another twist we can add to our Markov process to allow ourselves
further freedom about the way in which we choose states, without letting the
acceptance ratios get too low. It is called continuous time Monte Carlo,
‘or sometimes the BKL algorithm, after Bortz, Kalos and Lebowitz (1975),
who invented it. Continuous time Monte Carlo is not nearly as widely used
as it ought to be; it is an important and powerful technique and many
calculations can be helped enormously by making use of it.

Consider a system at low temperature. Such systems are always a prob-
lem where Monte Carlo methods are concerned—cool systems move from
state to state very slowly in real life and the problem is no less apparent
in simulations. A low-temperature system is a good example of the sort of
problem system that was described in the last section. Once it reaches equi-
librium at its low temperature it will spend a lot of its time in the ground
state. Maybe it will spend a hundred consecutive time-steps of the simu-

2.4 Continuous time Monte Carlo . , 43

lation in the ground state, then move up to the first excited state for one
time-step and then relax back to the ground state again. Such behaviour is
not unreasonable for a cold system but we waste a lot of computer time sim-
ulating it. Time-step after time-step our algorithm selects a possible move
to.some excited state, but the acceptance ratio is very low and virtually all
of these possible moves are rejected, and the system just ends up spending
most of its time in the ground state.

Well, what if we were to accept that this is the case, and take a look at the
acceptance ratio for a move from the ground state to the first excited state,
and say to ourselves, “Judging by this acceptance ratio, this system is going
to spend a hundred time-steps in the ground state before it accepts a move
to the first excited state”. Then we could jump the gun by assuming that
the system will do this, miss out the calculations involved in the intervening
useless one hundred time-steps, and progress straight to the one time-step in
which something interesting happens. This is the essence of the idea behind
the continuous time method. In this technique, we have a time-step which
corresponds to a varying length of time, depending on how long we expect
the system to remain in its present state before moving to a new one. Then
when we come to take the average of our observable () over many states, we
weight the states in which the system spends longest the most heavily—the
calculation of the estimator of @ is no more than a time average, so each
value @, for Q in state u should be weighted by how long the system spends
in that state.

How can we adapt our previous ideas concerning the transition proba-
bilities for our Markov process to take this new idea into account? Well,
assuming that the system is in some state , we can calculate how long a
time At (measured in steps of the simulation) it will stay there for before a
move to another state is accepted by considering the “stay-at-home” prob-
ability P(u — u). The probability that it is still in this same state u after ¢
time-steps is just

[P(u— p)]t = '8 Plmm), (2.18)
and so the time-scale At is
At = — 1 __ 1
log P(p—p) log[l =3, Plu—v)
~ : (2.19)

Muwmm:muﬁtl v)

So, if we can calculate this quantity At, then rather than wait this many
time-steps for a Monte Carlo move to get accepted, we can simply pretend
that we have done the waiting and go right ahead and change the state of
the system to a new state v # p. Which state should we choose for v7 We
should choose one at random, but in proportion to P(p — v). Thus our
continuous time Monte Carlo algorithm consists of the following steps:

