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Introduction

This book is about the use of computers to solve problems in statistical
physics. In particular, it is about Monte Carlo methods, which form
the largest and most important class of numerical methods used for solving
statistical physics problems. In this opening chapter of the book we look
first at what we mean by statistical physics, giving a brief overview of the
discipline we call statistical mechanics. Whole books have been written
on statistical mechanics, and our synopsis takes ouly a few pages, so we must
necessarily deal only with the very basics of the subject. We are assuming
that these basics are actually already familiar to you, but writing them down
here will give us a chance to bring back to mind some of the ideas that are
most relevant to the study of Monte Carlo methods. In this chapter we also
look at some of the difficulties associated with solving problems in statistical
physics using a computer, and outline what Monte Carlo techniques are, and
why they are useful. In the last section of the chapter, purely for fun, we
give a brief synopsis of the history of computational physics and Monte Carlo
methods.

1.1 Statistical mechanics

Statistical mechanics is primarily concerned with the calculation of prop-
erties of condensed matter systems. The crucial difficulty associated with
these systems is that they are composed of very many parts, typically atoms
or molecules. These parts are usually all the same or of a small number
of different types and they often obey quite simple equations of motion so
that the behaviour of the entire system can be expressed mathematically
in a straightforward manner. But the sheer number of equations—just the
magnitude of the problem—makes it impossible to solve the mathematics
exactly,_A standard example is that of a volume of gas in a container. One
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litre of, say, oxygen at standard temperature and pressure consists of about
3 x 102 oxygen molecules, all moving around and colliding with one another
and the walls of the container. One litre of air under the same conditions
contains the same number of molecules, but they are now a mixture of oxy-
gen, nitrogen, carbon dioxide and a few other things. The atmosphere of the
Earth contains 4 x 102! litres of air, or about 1 x 104 molecules, all moving
around and colliding with each other and the ground and trees and houses
and people. These are large systems. It is not feasible to solve Hamilton’s
equations for these systems because there are simply too many equations,
and yet when we look at the macroscopic properties of the gas, they are very
well-behaved and predictable. Clearly, there is something special about the
behaviour of the solutions of these many equations that “averages out” to
give us a predictable behaviour for the entire system. For example, the pres-
sure and temperature of the gas obey quite simple laws although both are
measures of rather gross average properties of the gas. Statistical mechanics
attempts to side-step the problem of solving the equations of motion and cut
straight to the business of calculating these gross properties of large systems
by treating them in a probabilistic fashion. Instead of looking for exact so-
lutions, we deal with the probabilities of the system being in one state or
another, having this value of the pressure or that—hence the name statisti-
cal mechanics. Such probabilistic statements turn out to be extremely useful,
because we usually find that for large systems the range of behaviours of the
‘system that are anything more than phenomenally unlikely is very small;
all the reasonably probable behaviours fall into a narrow range, allowing us
to state with extremely high confidence that the real system will display
behaviour within that range. Let us look at how statistical mechanics treats
these systems and demonstrates these conclusions.

The typical paradigm for the systems we will be studying in this book is
one of a system governed by a Hamiltonian function H which gives us the
. total .energy of the system in any particular state. Most of the examples
we will be looking at have discrete sets of states each with its own energy,
ranging from the lowest, or ground state energy Ey upwards, Eq, E, E3.. .,
possibly without limit. Statistical mechanics, and the Monte Carlo methods
we will be introducing, are also applicable to systems with continuous energy
spectra, and we will be giving some examples of such applications.

If our Hamiltonian system were all we had, life would be dull. Being
a Hamiltonian system, energy would be conserved, which means that the
system would stay in the same energy state all the time (or if there were
_a number of degenerate states with the same energy, maybe it would make
transitions between those, but that’s as far as it would get).! However,

.Hm.om. a classical system which has a continuum of energy states there can be a continuous
set of degenerate states through which the system passes, and an average over those states
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there’s another component to our paradigm, and that is the thermal reser-
voir. This is an external system which acts as a source and sink of heat,
constantly exchanging energy with our Hamiltonian system in such a way
as always to push the temperature of the system—defined as in classical
thermodynamics—towards the temperature of the reservoir. In effect the
reservoir is a weak perturbation on the Hamiltonian, which we ignore in our
calculation of the energy levels of our system, but which pushes the system
frequently from one energy level to another. We can incorporate the effects
of the reservoir in our calculations by giving the system a dynamics, a rule
whereby the system changes periodically from one state to another. The ex-
act nature of the dynamics is dictated by the form of the perturbation that
the reservoir produces in the Hamiltonian. We will discuss many different
possible types of dynamics in the later chapters of this book. However, there
are a number of general conclusions that we can reach without specifying
the exact form of the dynamics, and we will examine these first.

Suppose our system is in a state u. Let us define R(y — v)dt to be Swo
probability that it is in state v a time di later. R(p — v) is the transi-
tion rate for the transition from u to v. The transition rate is normally
assumed to be time-independent and we will make that assumption here.
We can define a transition rate like this for every possible state v that the
systemn can reach. These transition rates are usually all we know about the
dynamics, which means that even if we know the state p that the m%mﬁm.a
starts off in, we need only wait a short interval of time and it could be in
any one of a very large number of other possible states. This is érmao. our
probabilistic treatment of the problem comes in. We Qmm.zw a mwﬁ of weights
w,,(¢) which represent the probability that the system will be in state y at
time £. Statistical mechanics deals with these weights, and they represent
our entire knowledge about the state of the system. We can write a master
equation for the evolution of wy(t) in terms of the rates R(u — v) thus:?
glﬁmW =Y [w (R — p) — wu()R(k — v)]. (11)

v
The first term on the right-hand side of this equation represents the rate mﬁ
which the system is undergoing transitions into state u; the second term is
the rate at which it is undergoing transitions out of u into other states. The
probabilities w,(t) must also obey the sum rule

S wut) =1 _ (1.2)
I

degenerate states are said to form a microcanonical ensemble. The more general case
we consider here, in which there is a thermal reservoir causing the energy of the system
to fluctuate, is known as a canonical ensemble.

is really a set of equations, one for each state u, although people

2The master equation :
axgeoallitth aster eguation. as here were only one equation here.
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for all ¢, since the system must always be in some state. The solution of
Equation (1.1), subject to the constraint (1.2), tells us how the weights Wy
vary over time.

And how are the weights w,, related to the macroscopic properties of the
system which we want to know about? Well, if we are interested in some

quantity @, which takes the value @), in state y, then we can define the
expectation of @ at time ¢ for our system as

(@ =) Quu, (). : (1.3)

Clearly this quantity contains important information about the real value of
@ that we might expect to measure in an experiment. For example, if our
system is definitely in one state 7 then (Q) will take the corresponding value
Q. And if the system is equally likely to be in any of perhaps three states,
and has zero probability of being in any other state, then (Q) is equal to the
mean of the values of () in those three states, and so forth. However, the
precise relation of (@) to the observed value of Q) is perhaps not very clear.
There are really two ways to look at it. The first, and more rigorous, is to
imagine having a large number of copies of our system all interacting with
their own thermal reservoirs and whizzing between one state and another
all the time. (Q) is then a good estimate of the number we would get if
we were to measure the instantaneous value of the quantity @ in each of
these systems and then take the mean of all of them. People who worry
about the conceptual foundations of statistical mechanics like to take this
“many systems” approach to defining the expectation of a quantity.® The
trouble with it however is that it’s not very much like what happens in a
real experiment. In a real experiment we normally only have one system and
we make all our measurements of @ on that system, though we probably
~don’t just make a single instantaneous measurement, but rather integrate
* our results over some period of time. There is another way of looking at
the expectation value which is similar to this experimental picture, though
it is less rigorous than the many systems approach. This is to envisage the
expectation as a time average of the quantity ). Imagine recording the value
of () every second for a thousand seconds and taking the average of those one
thousand values. This will correspond roughly to the quantity calculated in
Equation (1.3) as long as the system passes through a representative selection
of the states in the probability distribution w, in those thousand seconds.
And if we make ten thousand measurements of Q instead of one thousand,

31In fact the word ensemble, as in the “canonical ensemble” which was mentioned in a
* previous footnote, was originally introduced by Gibbs to describe an ensemble of systems

like this, and not an ensemble of, say, molecules, or any other kind of ensemble. These
days however, use of this word no longer implies that the writer is necessarily thinking of

echanice
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or a million or more, we will get an increasingly accurate fit between our
experimental average and the expectation (Q). . . .

Why is this a less rigorous approach? The main problem is the nzmmﬁos
of what we mean by a “representative selection of the states”. There is no
guarantee that the system will pass through anything like a representative
sample of the states of the system in our one thousand seconds. It could
easily be that the system only hops from one state to another every ten
thousand seconds, and so turns out to be in the same state for @.z of our
one thousand measurements. Or maybe it changes state very .Hmmﬁ:% but
because of the nature of the dynamics spends long periods nm time in m.ﬁm:
portions of the state space. This can happen for example if g.o Sm.bm:uou
rates R(u — v) are only large for states of the system drﬁ differ in very
small ways, so that the only way to make a large orwbm.m in the state of
the system is to go through very many small steps. HEm is a very common
problem in a lot of the systems we will be looking md. in this Uoow. Another
potential problem with the time average interpretation of Gwv is that gw
weights w,,(t), which are functions of time, may ormbm.m ooﬂ.wmamam,cq over
the course of our measurements, making the expression invalid. ﬂzm. can be
a genuine problem in both experiments and m.:samﬁosm of soz-mncwrgca
systems, which are the topic of the second part of ﬁ:m.v.oow. mda. mpE:UE.cB
systems, as discussed below, the weights are by definition not time-varying,
so this problem does not arise. . .

Despite these problems however, this SBm-mZmEmm interpretation of nw.m
expectation value of a quantity is the most widely used NE.Q most m.xvm%.
mentally relevant interpretation, and it is the one that we will adopt in this
book. The calculation of expectation values is one of the ?nmmﬂmcﬂ& mo.m.a
of statistical mechanics, and of Monte Carlo simulation in statistical physics,
and much of our time will be concerned with it.

1.2 Equilibrium

Consider the master equation (1.1) again. If our system ever reaches a state
in which the two terms on the right-hand side mxmoa.% cancel one m.mogma w.um
all 4, then the rates of change dw,/dt will all ,.\E.:mr and H.r.m S.ngm wi

all take constant values for the rest of time. This is an mQErUEE.d state.
Since the master equation is first order with real parameters, and since the

- variables w), are constrained to lie between zero and one (which effectively

prohibits exponentially growing solutions to the m@:maonm.v we can see gwd
all systems governed by these equations must .oogm to equilibrium 5.35 mm .
A large part of this book will be concerned with .goam Carlo ﬁmowEa:mmm K Mn
simulating equilibrium systems snd in this section we develop some of the
important statistical mechanical concepts that apply to these m%mnm.Bm.

The transition rates R(u — v) appearing in the master equation (1.1)
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do not just take any values. They take particular values which arise out of

_ the thermal nature of the interaction between the system and the thermal
reservoir. In the later chapters of this book we will have to choose val-
ues for these rates when we simulate thermal systems in our Monte Carlo
calculations, and it is crucial that we choose them so that they mimic the
interactions with the thermal reservoir correctly. The important point is
that we know a priori what the equilibrium values of the weights w,, are for
our system. We call these equilibrium values the equilibrium occupation
probabilities and denote them by '

suﬁwﬁﬁs Ev
It was Gibbs (1902) who showed that for a system in thermal equilibrium
with a reservoir at temperature T, the equilibrium occupation probabilities
are

H

Pu= e Bu/kT, (1.5)
Here E,, is the energy of state y and k is Boltzmann’s constant, whose value
s 1.38 x 1072 JK™!. It is conventional to denote the quantity (kT')~*
by the symbol 8, and we will follow that convention in this book. Z is a
normalizing constant, whose value is given by

Z=3) e Bu/M =% e fh, (1.6)
K 2

Z is also'’known as the partition function, and it figures a lot more heavily
in the mathematical development of statistical mechanics than a mere nor-
maljzing constant might be expected to. It turns out in fact that a knowledge
of the variation of Z with temperature and any other parameters affecting
" the system (like the volume of the box enclosing a sample of gas, or the mag-
netic field applied to a magnet) can tell us virtually everything we might want
to know -about the macroscopic behaviour of the system. The probability
distribution (1.5) is known as the Boltzmann distribution, after Ludwig
Boltzmann, one of the pioneers of statistical mechanics. For a discussion of
the origins of the Boltzmann distribution and the arguments that lead to it,
the reader is referred to the exposition by Walter Grandy in his excellent
book Foundations of Statistical Mechanics (1987). In our treatment we will
take Equation (1.5) as our starting point for further developments.

From Equations (1.3), (1.4) and (1.5) the expectation of a quantity Q for
a system In equilibrium is

AOV = M@t@t = W M @t e PBu, AH.J
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For example, the expectation value of the energy (E), which is ﬂmo.gm
quantity we know from thermodynamics as the internal energy U, is given
by

H |Q@t .
Q,.HMM@% : (1.8)

From Equation (1.8) we can see that this can also be written in terms of a
derivative of the partition function:

yo_L0Z2_ _0leZ (1.9)

Z op o8

The specific heat is given by the derivative of the internal energy:

ou 20U ,0%log Z
- =k — =k .
¢ oT p ap g Bl
However, from thermodynamics we know that the specific heat is also related
to the entropy:

(1.10)

a5 as (1.11)
C=Tz =55

and, equating these two expressions for C and integrating with respect to 3,
we find the following expression for the entropy:

BlogZ
op

(There is in theory an integration constant in this equation, but w.ﬂ is mmﬁ.no
zero under the convention known as the third law of thermodynamics, which
fixes the arbitrary origin of entropy by saying that the m:i.ov.% of a system
should tend to zero as the temperature does.) We can also write an expres-
sion for the (Helmholtz) free energy F' of the system, using Equations (1.9)
and (1.12):

S =—kg +klog Z. (1.12)

F=U-TS=-kTlogZ. (1.13)

We have thus shown how U, F, C and § can all be calculated directly
from the partition function Z. The last equation also nw:m us how we can
deal with other parameters affecting the system. F Qmmm_o& thermodynam-
ics, parameters and constraints and fields interacting with the system each
have conjugate variables which represent the response of the system to the
perturbation of the corresponding parameter. .m,Q. mxmﬁw_mv the response of
a gas system in a box to a change in the oObms:.ﬁ volume isa change in ﬁ.Wm
pressure of the gas. The pressure p is the conjugate variable to the para-

meter V. Similarly, the magnetization M of a magnet changes in response
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to the m@w:ma magnetic field B; M and B are conjugate variables. Ther-
modynamics tells us that we can calculate the values of conjugate variables
from derivatives of the free energy:

_ BF
p= |%, AH.HAV
oF

Thus, if we can calculate the free energy using Equation (1.13), then we can
calculate the effects of parameter variations too.

In performing Monte Carlo calculations of the properties of equilibrium
systems, it is sometimes appropriate to calculate the partition function and
then m<mwcmﬁm other quantities from it. More often it is better to calculate
the quantities of interest directly, but many times in considering the theory
behind our simulations we will return to the idea of the partition function,
because in principle the entire range of thermedynamic properties of a system
can be deduced from this function, and any numerical method that can make
a good estimate of the partition function is at heart a sound method.

1.2.1 Fluctuations, correlations and responses

- Statistical mechanics can tell us about other properties of a system apart
from the macroscopic ones that classical equilibrium thermodynamics deals
_ with such as entropy and pressure. One of the most physically interesting
classes of properties is fluctuations in observable quantities. We described
‘in the mnmﬁ part of Section 1.1 how the calculation of an expectation could be
regarded as a time average over many measurements of the same property
of a single system. In addition to calculating the mean value of these many
measurements, it is often useful also to calculate their standard deviation,
which gives us a measure of ‘the variation over time of the quantity we are
yooww.bm at, and so tells us quantitatively how much of an approximation
we are making by giving just the one mean value for the expectation. To
take an example, let us consider the internal energy again. The mean square
deviation of individual, instantaneous measurements of the energy away from

" the mean value U = (E) is :

(B -(E)?® = (E%) - (E)*. (1.186)

We can calculate (E?) from derivatives of the partition function in a way
similar to our calculation of (E):

o 1 o _pp. 1027
T >
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So

2z z1? 8?
18 ﬁm Q _ logZ (118)

E% — 2o - = —_—
(E%) -~ (E) Z 9p? Z og 862
Using Equation (1.10) to eliminate the second derivative, we can also write
this as

c

(E®) — (B)* = Pk

(1.19)
And the standard deviation of E, the RMS fluctuation in the internal energy,
is just the square root of this expression.

This result is interesting for a number of reasons. First, it gives us the
magnitude of the fluctuations in terms of the specific heat C or alternatively
in terms of log Z = —BF. In other words we can calculate the fluctuations
entirely from quantities that are available within classical thermodynamics.
However, this result could never have been derived within the framework
of thermodynamics, since it depends on microscopic details that thermody-
namics has no access to. Second, let us look at what sort of numbers we
get out for the size of the energy fluctuations of a typical system. Let us go
back to our litre of gas in a box. A typical specific heat for such a system is
1 JK~! at room temperature and atmospheric pressure, giving RMS energy
fluctuations of about 10~18 J. The internal energy itself on the other hand
will be around 10? J, so the fluctuations are only about one part in 10%°.
This lends some ¢redence to our earlier contention that statistical treatments
can often give a very accurate estimate of the expected behaviour of a sys-
tem. We see that in the case of the internal energy at least, the variation of
the actual value of U around the expectation value (E) is tiny by compari-
son with the kind of energies we are considering for the whole system, and
probably not within the resolution of our measuring equipment. So quoting
the expectation value gives a very good guide to what we should expect to
see in an experiment. Furthermore, note that, since the specific heat C is
an extensive quantity, the RMS energy fluctuations, which are the square
root of Equation (1.19), scale like /V with the volume V of the system. The
internal energy itself on the other hand scales like V, so that the relative size
of the fluctuations compared to the internal energy decreases as 1/ vV as the
system becomes large. In the limit of a very large system, therefore, we can
ignore the fluctuations altogether. For this reason, the limit of a large system
is called the thermodynamic limit. Most of the questions we would like
to answer about condensed matter systems are questions about behaviour
in the thermodynamic limit. Unfortunately, in Monte Carlo simulations it
is often not feasible to simulate a system large enough that its behaviour
is a good approximation to a large system. Much of the effort we put into
designing algorithms will be aimed at making them efficient enough that we

eansimulate-thelargest-systems possi ble in the avaliable computer tIne
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the hope of getting results which are at least a reasonable approximation to
the thermodynamic limit.

What about fluctuations in other thermodynamic variables? As we dis-
cussed in Section 1.2, each parameter of the system that we fix, such as a
volume or an external field, has a conjugate variable, such as a pressure or a
magnetization, which is given as a derivative of the free energy by an equa-
tion such as (1.14) or (1.15). Derivatives of this general form are produced
by terms in the Hamiltonian of the form —~XY, where Y is a “field” whose
value we fix, and X is the conjugate variable to which it couples. For ex-
ample, the effect of a magnetic field on a magnet can be accounted for by a
magnetic energy term in the Hamiltonian of the form —M B, where M is the
magnetization of the system, and B is the applied magnetic field. We can
write the expectation value of X in the form of Equations (1.14) and (1.15)

thus: ) 5
: 1
X)= =Y Xy PP = — N e PR
X) =23z - ue BZ Y < e

since E, now contains the term —X,Y which the derivative acts on. Here
X, is the value of the quantity X in the state u. We can then write this in
terms of the free energy thus:

(1.20)

_108logZ _ OF
g oYy ~— oY’
This is a useful technique for calculating the thermal average of a quan-
tity, even if no appropriate field coupling to that quantity appears in the
Hamiltonian. We can simply make up a fictitious field which couples to our
quantity in the appropriate way—just add a term to the Hamiltonian any-
way to allow us to calculate the expectation of the quantity we are interested
E.\m:& then set the-field to zero after performing the derivative, making the
fictitious term vanish from the Hamiltonian again. This is a very common
trick in statistical mechanies.
Another derivative of log Z with respect to Y produces another factor of
X, in the sum over states, and we find
2
o= S E e -,
which we recognize as the mean square fluctuation in the variable X. Thus
we can find the fluctuations in all sorts of quantities from second derivatives
of the free energy with respect to the appropriate fields, just as we can find
the energy fluctuations from the second derivative with respect to (. The
derivative 8{X)}/8Y, which measures the strength of the response of X to
changes in Y is called the susceptibility of X to Y, and is usually denoted
by x

(X) (1.21)

(1.22)

(X
X) (1.23)

Vvo=
x

oY
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Thus the fluctuations in a variable are proportional to the susceptibility of
that variable to its conjugate field. This fact is known as the linear re-
sponse theorem and it gives us a way to calculate susceptibilities within
Monte Carlo calculations by measuring the size of the fluctuations of a vari-
able. :

Extending the idea of the susceptibility, and at the same time moving a
step further from the realm of classical thermodynamics, we can also con-
sider what happens when we change the value of a parameter or field at one
particular position in our system and ask what effect that has on the con-
jugate variable at other positions. To study this question we will consider
for the moment a system on a lattice. Similar developments are possible for
continuous systems like gases, but most of the examples considered in this
book are systems which fall on lattices, so it will be of more use to us to go
through this for a lattice system here. The interested reader might like to
develop the corresponding theory for a continuous system as an exercise.

Let us then suppose that we now have a field which is spatially varying
and takes the value Y; on the it site of the lattice. The conjugate variables
to this field* are denoted z;, and the two are linked via a term in the Hamil-
tonian — Y, z;Y;. Clearly if we set Y; = Y and z; = X/N for all sites 1,
where N is the total number of sites on the lattice, then this becomes equal
once more to the homogeneous situation we considered above. Now in-a
direct parallel with Equation (1.20) we can write the average value of z; as

- (a) = ateEn = LT0EZ,
®

7 7o, (1.24)

where zf' is the value of z; in state 4. Then we can define a generalized

susceptibility xi; which is a measure of the response of (z;) to a variation of |

the field Y; at a different lattice site:

o 8(zs) IWmﬁomN
Xii = By, ~ B oYidoY;

(1.25)

Again the susceptibility is a second derivative of the free energy. If we make
the substitution Z = 3, e~PE. again (Equation (1.6)), we see that this is
also equal to

Xij = W. Muawag e PE — 3 ﬁ.w Muaﬂ. mlum; ﬁw Me“mlmm.@
, p u v
Bl(zixs) = (m:)(z5)) = BGE (6, 5).

4We use lower-case z; to denote an intensive variable. X by contrast was extensive,
i.e., its value scales with the size of the system. We will use this convention to distinguish
intensive 2 e sive variables throughout much of this book.

(1.26)

]
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The quantity QMS (i,) is called the two-point connected correlation
function of z between sites ¢ and j, or just the connected correlation, for
short. The superscript (2) is to distinguish this function from higher order
correlation functions, which are discussed below. As its name suggests, this
function is a measure of the correlation between the values of the variable x
on the two sites; it takes a positive value if the values of z on those two sites
fluctuate in the same direction together, and a negative one if they fluctuate
in opposite directions. If their fluctuations are completely unrelated, then its
value will be zero. To see why it behaves this way consider first the simpler
disconnected correlation function G (i, j) which is defined to be

G4, 5) = {zizy). . (1.27)

If the variables z; and z; are fluctuating roughly together, around zero, both
becoming positive at once and then both becoming negative, at least most of
the time, then all or most of the values of the product z;z; that we average
will be positive, and this function will take a positive value. Conversely, if
they fluctuate in opposite directions, then it will take a negative value. If
they sometimes fluctuate in the same direction as one another and sometimes
in the opposite direction, then the values of z;z; will take a mixture of
positive and negative values, and the correlation function will average out
close to zero. This function therefore has pretty much the properties we
‘desire of a correlation function, and it can tell us a lot of useful things about
the behaviour of our system. However, it is not perfect, because we must
-also ‘consider what happens if we apply our field Y to the system. This
can have the effect that the mean value of = at a site (z;) can be non-
zero. The same thing can happen even in the absence of an external field if
our system-undergoes a phase transition to a spontaneously symmetry
broken state where a variable such as z spontaneously develops a non-zero
. expectation value. (The Ising model of Section 1.2.2, for instance, does this.)
In cases like these, the disconnected correlation function above can have a
large positive value simply because the values of the variables z; and z; are
always either both positive or both negative, even though this has nothing to
do with them being correlated to one another. The fluctuations of z; and z;
can be completely unrelated and still the disconnected correlation function
takes a non-zero value. To obviate this problem we define the connected
correlation function as above:

GP (i, J)

ill

(zizj) — (i) (z5)
A?: —(z3)) % (x5 — Aauvvv (1.28)

When the expectations (z;) and (z;) are zero and z; and z; are just fluctuat-
ing around zero, this function is exactly equal to the disconnected correlation

Il

function. But when the expectations are non-zero, the connected correlation
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function correctly averages only the fluctuations about those expectations—
the term we subtract exactly takes care of any trivial contribution arising
because of external fields or spontaneous symmetry breaking. If such trivial
contributions are the only reason why G® is non-zero then G? will be
zero, which is what we would like. If it is not zero, then we have a genuine
correlation between the fluctuations of z; and ;.

Although they are not often used in the sorts of systems we will be
studying in this book and we will not have call to calculate their values
in any of the calculations we will describe here, it is worth mentioning, in
case you ever need to use them, that there are also higher-order connected
correlation functions, defined by generalizing Equation (1.25) like this:

1 8logZ
3)r;: 4 = T2 Av AU At
G (i, 5,k) 3B 8Y;0Y;0Y’
1 d*legZ
o 1 1.29
Ca kY = Z 5y av,0%.0%) 2

and so on. These are measures of the correlation between simultaneous
fluctuations on three and four sites respectively. For a more detailed discus-
sion of these correlation functions and other related ones, see for example
Binney et al. (1992). i

1.2.2 An example: the Ising model

To try to make all of this a bit more concrete, we now introduce a particular
model which we can try these concepts out on. That model is the Ising
model, which is certainly the most thoroughly researched model in the whole
of statistical physics. Without doubt more person-hours have been spent
investigating the properties of this model than any other, and although an
exact solution of its properties in three dimensions still eludes us, despite
many valiant and increasingly sophisticated attempts, a great deal about it is
known from computer simulations, and also from approximate methods such
as series expansions and e-expansions. We will spend three whole chapters
of this book (Chapters 3, 4 and 10) discussing Monte Carlo techniques for
studying the model’s equilibrium and non-equilibrium properties. Here we
will just introduce it briefly and avoid getting too deeply into the discussion
of its properties.

The Ising model is a model of a magnet. The essential premise behind it,
and behind many magnetic models, is that the magnetism of a bulk material
is made up of the combined magnetic dipole moments of many atomic spins
within the material. The model postulates a lattice (which can be of any
geometry we choose—the simple cubic lattice in three dimensions is a com-

—mon choice) with a magnetic dipole or spin on each site. In the Ising model
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these spins assume the simplest form possible, which is not particularly re-
alistic, of scalar variables s; which can take only two values 1, representing
up-pointing or down-pointing dipoles of unit magnitude. In a real magnetic
material the spins interact, for example through exchange interactions or
RKKY interactions (see, for instance, Ashcroft and Mermin 1976), and the
Ising model mimics this by including terms in the Hamiltonian proportional

to products s;s; of the spins. In the simplest case, the interactions are all of ‘

the same strength, denoted by J which has the dimensions of an energy, and
are only between spins on sites which are nearest neighbours on the lattice.
We can also introduce an external magnetic field B coupling to the spins.
The Hamiltonian then takes the form

H=-J sis5i—BY s, (1.30)

{i5) i

where the notation (ij) indicates that the sites i and j appearing in the sum
are nearest neighbours.® The minus signs here are conventional. They merely
dictate the choice of sign for the interaction parameter J and the external
field B. With the signs as they are here, a positive value of J makes the
spins want to line up with one another—a ferromagnetic model as opposed
to an anti-ferromagnetic one which is what we get if J is negative—and the
spins also want to line up in the same direction as the external field—they
want to be positive if B > 0 and negative if B <0.

The states of the Ising system are the different sets of values that the
spins can take. Since each spin can take two values, there are a total of oN
states for a lattice with N spins on it. The partition function of the model
is the sum

NuMUMu M &LEM%X%M&. a.w:
= s1=+1s2=%1 sy=x%1 (i) 7

To save the eyes, we’ll write this in the shorter notation
z=> &P (1.32)
{s

If we can perform this sum, either analytically or using a computer, then
- we can apply all the results of the previous sections to find the internal
energy, the entropy, the free energy, the specific heat, and so forth. We can
‘also calculate the mean magnetization (M) of the model from the partition

mHEm notation is confusingly similar to the notation for a thermal average, but un-
fortunately both are sufficiently standard that we feel compelled to use them here. In

context it is almost always possible to tell them apart because one involves site labels and

the other involves physical variables appearing in the model.
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function using Equation (1.15), although as we will see it is usually simpler
to evaluate (M) directly from an average over states:

(M) = AM &v. (1.33)

T 1

Often, in fact, we are more interested in the mean magnetization per spin (m),

which is just ) :
m) = 5 (3 %). (1.39)

(In the later chapters of this book, we frequently use the letter m alone
to denote the average magnetization per spin, and omit the brackets {...)
around it indicating the average. This is also the common practice of many
other authors. In almost all cases it is clear from the context when an average
over states is to be understood.)

We can calculate fluctuations in the magnetization or the internal energy
by calculating derivatives of the partition function. Or, as we mentioned in
Section 1.2.1, if we have some way of calculating the size of the fluctuations
in the magnetization, we can use those to evaluate the magnetic suscep-
tibility

D) i) - (). (1.35)
(See Equation (1.22).) Again, it is actually more common to calculate the
magnetic susceptibility per spin:
x = Zqat) - () = BV () = (m?) (156)
(Note the leading factor of N here, which is easily overlooked when calculat-
ing x from Monte Carlo data.) Similarly we can calculate the specific heat
per spin ¢ from the energy fluctuations thus:

o= P () - (B, | 1.37)

(See Equation (1.19).)
We can also introduce a spatially varying magnetic field into the Hamil-

tonian thus: ;
H= I.NMU 8:8; — Mums..r. (1.38)
(i5) #
This gives us a different mean magnetization on each site:
« 10log 2

A::vu?vnm 35, o (1.39)
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ahd allows us to calculate the connected correlation function
1 8%logZ
"~ B?20B;0B;

When we look at the equilibrium simulation of the Ising model in Chap-
ters 3 and 4, all of these will be quantities of interest, and relations like

these between them give us useful ways of extracting good results from our
numerical data.

GA (i, 5) (1.40)

1.3 Numerical methods

While the formal developments of statistical mechanics are in many ways
very elegant, the actual process of calculating the properties of a particular
model is almost always messy and taxing. If we consider calculating the
partition function Z, from which, as we have shown, a large number of
interesting properties of a system can be deduced, we see that we are going
to have to perform a sum over a potentially very large number of states.
Indeed, if we are interested in the thermodynamic limit, the sum is over an
infinite number of states, and performing such sums is a notoriously difficult
exercise. It has been accomplished exactly for a number of simple models
with discrete energy states, most famously the Ising model in two dimensions
(Onsager 1944). This and other exact solutions are discussed at some length
by Baxter (1982). However, for the majority of models of interest today,
it has not yet proved possible to find an exact analytic expression for the
partition function, or for any other equivalent thermodynamic quantity. In
the absence of such exact solutions a number of approximate techniques
have been. developed including series expansions, field theoretical methods
and computational methods. The focus of this book is on the last of these,
the computational methods.

The most straightforward computational method for solving problems in
statistical physics is to take the model we are interested in and put it on
a lattice of finite size, so that the partition function becomes a sum with
a finite number of terms. (Or in the case of a model with a continuous
energy spectrum it becomes an integral of finite dimension.) Then we can
mBEO% our computer to evaluate that sum (or integral) numerically, by
simply evaluating each term in turn and adding them up. Let’s see what
happens when we apply this technique to the Ising model of Section 1.2.2.

If we were really interested in tackling an unsolved problem, we might
look at the Ising model in three dimensions, whose exact properties have not
yet been found by any method. However, rather than jump in at the deep
end, let’s first look at the two-dimensional case. For a system of a given
linear dimension, this model will have fewer energy states than the three-
dimensional one, making the sum over states simpler and quicker to perform,

i
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and the model has the added pedagogical advantage that its behaviour has
been solved exactly, so we can compare our numerical calculations with the
exact solution. Let’s take a smallish system to start with, of 25 spins on
a square lattice in a 5 x 5 arrangement. By convention we apply periodic
boundary conditions, so that there are interactions between spins on the
border of the array and the opposing spins on the other side. We will also
set the external magnetic field B to zero, to make things simpler still.

With each spin taking two possible states, represented by +1, our 25 spin
system has a total of 225 = 33 554 432 possible states. However, we can save
ourselves from summing over half of these, because the system has up/down
symmetry, which means that for every state there is another one in which
every spin is simply flipped upside down, which has exactly the same energy
in zero magnetic field. So we can simplify the calculation of the partition
function by just taking one out of every pair of such states, for a total of
16777 216 states, and summing up the corresponding terms in the partition
function, Equation (1.6), and then doubling the sum.®

In Figure 1.1 we show the mean magnetization per spin and the spe-
cific heat per spin for this 5 x 5 system, calculated from Equations (1.10)
and (1.34). On the same axes we show the exact solutions for these quanti-
ties on an infinite lattice, as calculated by Onsager. The differences between
the two are clear, and this is precisely the difference between our small
finite-sized system and the infinite thermodynamic-limit system which we
discussed in Section 1.2.1. Notice in particular that the exact solution has
a non-analytic point at about kT = 2.3J which is not reproduced even
moderately accurately by our small numerical calculation. This point is the
so-called “critical temperature” at which the length-scale £ of the fluctu-
ations in the magnetization, also called the “correlation length”, diverges.
(This point is discussed in more detail in Section 3.7.1.) Because of this
divergence of the length-scale, it is never possible to get good results for the
behaviour of the system at the critical temperature out of any calculation
performed on a finite lattice—the lattice is never large enough to include all
of the important physics of the critical point. Does this mean that calcula-
tions on finite lattices are useless? No, it certainly does not. To start with,
at temperatures well away from the critical point the problems are much less
severe, and the numerical calculation and the exact solution agree better,

61f we were really serious about this, we could save ourselves further time by making
use of other symmetries too. For example the square system we are investigating here also
has a reflection symmetry and a four-fold rotational symmetry (the symmetry group is
C4), meaning that the states actually group into sets of 16 states (including the up—down
symmetry pairs), all of which have the same energy. This would reduce the number of
terms we have to evaluate to 2 105872. (The reader may like to ponder why this number is
not exactly 225 /16, as one might expect.) However, such efforts are not really worthwhile,
since, as we will see very shortly, this direct evaluation of the partition function is not a
promising method for solving models.
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FIGURE 1.1 Top: the mean magnetization per spin m of a 5 x 5 Ising

model on a square lattice in two dimensions (solid line) and the same
quantity on an infinitely big square lattice (dashed line). Bottom: the
specific heat per spin c for the same two cases.
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as we can see in the figure. If we are interested in physics in this regime,
then a calculation on a small lattice may well suffice. Second, the technique
of “fnite size scaling”, which is discussed in Section 8.3, allows us to ex-
trapolate results for finite lattices to the limit of infinite system size, and
extract good results for the behaviour in the thermodynamic limit. Another
technique, that of “Monte Carlo renormalization”, discussed in Section 8.4,
provides us with a cunning indirect way of calculating some of the features
of the critical regime from just the short length-scale phenomena that we
get out of a calculation on a small lattice, even though the direct cause of
the features that we are interested in is the large length-scale fluctuations
that we mentioned.

However, although these techniques can give answers for the eritical prop-
erties of the system, the accuracy of the answers they give still depends on
the size of the system we perform the calculation on, with the answers im-
proving steadily as the system size grows. Therefore it is in our interest to
study the largest system we can. However, the calculation which appears
as the solid lines in Figure 1.1 took eight hours on a moderately powerful
computer. The bulk of this time is spent running through the terms in the
sum (1.6). For a system of N spins there are 2V terms, of which, as we
mentioned, we only need actually calculate a half, or 2~1. This number
increases exponentially with the size of the lattice, so we can expect the time
taken by the program to increase very rapidly with lattice size. The next
size of square lattice up from the present one would be 6 x 6 or N = 36,
which should take about 236=1/225~1 = 2048 times as long as the previous
calculation, or about two years. Clearly this is an unacceptably long time to
wait for the answer to this problem. 1f we are interested in results for any
system larger than 5 x 5, we are going to have to find other ways of getting
them.

1.3.1 Monte Carlo simulation

There is essentially only one known numerical method for calculating the
partition function of a model such as the Ising model on a large lattice, and
that method is Monte Carlo simulation, which is the subject of this book.
The basic idea behind Monte Carlo simulation is to simulate the random
thermal fluctuation of the system from state to state over the course of
an experiment. In Section 1.1 we pointed out that for our purposes it is
most convenient to regard the calculation of an expectation value as a time
average over the states that a system passes through. In a Monte Carlo
calculation we directly simulate this process, creating a model system on
our computer and making it pass through a variety of states in such a way
that the probability of it being in any particular state p at a given time ¢
is equal to the weight wy(t) which that state would have in a real system.
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In order to achieve this we have to choose a dynamics for our simulation—a
rule for changing from one state to another during the simulation—which
results in each state appearing with exactly the probability appropriate to
it. In the next chapter we will discuss at length a number of strategies for
doing this, but the essential idea is that we try to simulate the physical
processes that give rise to the master equation, Equation (1.1). We choose
a set of rates R(p — v) for transitions from one state to another, and we
choose them in such a way that the equilibrium solution to the corresponding
master equation is precisely the Boltzmann distribution (1.5). Then we use
these rates to choose the states which our simulated system passes through
during the course of a simulation, and from these states we make estimates
of whatever observable quantities we are interested in.

The advantage of this technique is that we need only sample quite a
small fraction of the states of the system in order to get accurate estimates
of physical quantities. For example, we do not need to include every state
of the system in order to get a decent value for the partition function, as
we would if we were to evaluate it directly from Equation (1.6). The prin-
cipal disadvantage of the technique is that there are statistical errors in the
calculation due to this same fact that we don’t include every state in our
calculation, but only some small fraction of the states. In particular this
means that there will be statistical noise in the partition function. Taking
the derivative of a noisy function is always problematic, so that calculating
expectation values from derivatives of the partition function as discussed in
Section 1.2 is usually not a good way to proceed. Instead it is normally bet-
ter in Monte Carlo simulations to calculate as many expectations as we can’
directly, using equations such as (1.34). We can also make use of relations
such as (1.36) to calculate quantities like susceptibilities without having to
evaluate a derivative.

In the next chapter we will consider the theory of Monte Carlo simulation
in equilibrium thermal systems, and the rest of the first part of the book
will deal with the design of algorithms to investigate these systems. In the
second part of the book we look at algorithms for non-equilibrium systems.

1.4 A brief history of the Monte Carlo method

In this section we outline the important historical developments in the evo-
lution of the Monte Carlo method. This section is just for fun; feel free to
skip over it to the next chapter if you’re not interested.

The idea of Monte Carlo calculation is a lot older than the computer. The

“name “Monte Carlo” is relatively recent—it was coined by Nicolas Metropolis

in 1949—but under the older name of “statistical sampling” the method
has a history stretching back well into the last century, when numerical
calculations were performed by hand using pencil and paper and perhaps
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FIGURE 1.2 The pathological function f(z) = sin® £, whose integral
with respect to z, though hard to evaluate analytically, can be eval-
uated in a straightforward manner using the Monte Carlo integration
technique described in the text.

a slide-rule. As first envisaged, Monte Carlo was not a method for solving
problems in physics, but a method for estimating integrals which could not
be performed by other means. Integrals over poorly-behaved functions and
integrals in high-dimensional spaces are two areas in which the method has
traditionally proved profitable, and indeed it is still an important technique
for problems of these types. To give an example, consider the function

f(z) = sin® (1.41)

8]l

which is pictured in Figure 1.2. The values of this function lie entirely
between zero and one, but it is increasingly rapidly varying in the neigh-
bourhood of £ = 0. Clearly the integral

I(z) = \oa f(z')ydz' (1.42)

which is the area under this curve between 0 and z, takes a finite value
somewhere in the range 0 < I(z) < x, but it is not simple to calculate
this value exactly because of the pathologies of the function near the origin.
However, we can make an estimate of it by the following method. If we
choose a random real mumber h, uniformly distributed between zero and z,

and another v between zero and one and plot on Figure 1.2 the point for
which these are the horizontal and vertical coordinates, the probability that

v
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R FIGURE 1.3 The function I(z), calculated by Monte Carlo integration
o as described in the text.

this point will be below the line of f(z) is just I(z)/x. It is easy to determine
whether the point is in fact below the line: it is below it if A < f(v). Thus if
we simply pick a large number N of these random points and count up the
number M which fall below the line, we can estimate I(z) from

. Mz

- I(z) = %@8 —_ (1.43)
You can get an answer accurate to one figure by taking a thousand points,
which would be about the limit of what one could have reasonably done in
.ewm days before computers. Nowadays, even a cheap desktop computer can
comfortably run through a million points in a few seconds, giving an answer
accurate to about three figures. In Figure 1.3 we have plotted the results of
such a calculation for a range of values of z. The errors in this calculation
are smaller than the width of the line in the figure.”

A famous early example of this type of calculation is the experiment
known as “Buffon’s needle” (Dérrie 1965), in which the mathematical con-
stant 7 is determined by repeatedly dropping a needle onto a sheet of paper
ruled with evenly spaced lines. The experiment is named after Georges-Louis
‘Leclerc, Comte de Buffon who in 1777 was the first to show that if we throw
a needle of length | completely at random onto a sheet of paper ruled with
lines a distance d apart, then the chances that the needle will fall so as to

.Ju @9 there exist a number of more sophisticated Monte Carlo integration techniques
which give more accurate answers than the simple “hit or miss” method we have described
here. A discussion can be found in the book by Kalos and Whitlock (1986).
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intersect one of the lines is 2//7d, provided that d > l. It was Laplace in
1820 who then pointed out that if the needle is thrown down N times and
is observed to land on a line M of those times, we can make an estimate of
7 from

r= lim —. (1.44)

(Perhaps the connection between this and the Monte Carlo evaluation of
integrals is not immediately apparent, but it will certainly become clear
if you try to derive Equation (1.44) for yourself, or if you follow Dérrie’s
derivation.) A number of investigators made use of this method over the
years to calculate approximate values for 7. The most famous of these is
Mario Lazzarini, who in 1901 announced that he had calculated a value of
3.1415929 for 7 from an experiment in which a mw cm needle was dropped
3408 times onto a sheet of paper ruled with lines 3 cm apart. This value,
accurate to better than three parts in ten million, would be an impressive
example of the power of the statistical sampling method were it not for
the fact that it is almost certainly faked. Badger (1994) has demonstrated
extremely convincingly that, even supposing Lazzarini had the technology
at his disposal to measure the length of his needle and the spaces between
his lines to a few parts in 107 (a step necessary to ensure the accuracy of
Equation (1.44)), still the chances of his finding the results he did were
poorer than three in a million; Lazzarini was imprudent enough to publish
details of the progress of the experiment through the 3408 castings of the
needle, and it turns out that the statistical “Auctuations” in the numbers of
intersections of the needle with the ruled lines are much smaller than one
would expect in a real experiment. All indications are that Lazzarini forged
his results. However, other, less well known attempts at the experiment were
certainly genuine, and yielded reasonable figures for 7: 3.1596 (Wolf 1850),
3.1553 (Smith 1855). Apparently, performing the Buffon’s needle experiment
was for a while quite a sophisticated pastime amongst Europe’s intellectual
gentry. ,

With the advent of mechanical calculating machines at the end of the
nineteenth century, numerical methods took a large step forward. These
machines increased enormously the number and reliability of the arithmetic
operations that could be performed in a numerical “experiment”, and made
the application of statistical sampling techniques to research problems in
physics a realistic possibility for the first time. An early example of what
was effectively a Monte Carlo calculation of the motion and collision of the
molecules in a gas was described by William Thomson (later Lord Kelvin)
in 1901. Thomson’s calculations were aimed at demonstrating the truth
of the equipartition theorem for the internal energy of a classical system.
However, after the fashion of the time, he did not perform the laborious
analysis himself, and a lot of the credit for the results must go to Thomson’s
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secretary, William Anderson, who apparently solved the kinetic equations
for more than five thousand molecular collisions using nothing more than a
pencil and a mechanical adding machine.

Aided by mechanical calculators, numerical methods, particularly the
method of finite differences, became an important tool during the First
World War. The authors recently heard the intriguing story of the Herculean
efforts of French mathematician Henri Soudée, who in 1916 calculated firing
tables for the new 400 mm cannons being set up at Verdun, directly from his
knowledge of the hydrodynamic properties of gases. The tables were used
when the cannons were brought to bear on the German-occupied Fort de
Douaumont, and as a result the fort was taken by the allies. Soudée was
later honoured by the French. By the time of the Second World War the me-
chanical calculation of firing angles for large guns was an important element
of military technology. The physicist Richard Feynman tells the story of his
employment in Philadelphia during the summer of 1940 working for the army
on a mechanical device for predicting the trajectories of planes as they flew
past (Feynman 1985). The device was to be used to guide anti-aircraft guns
in attacking the planes. Despite some success with the machine, Feynman
left the army’s employ after only a few months, joking that the subject of
mechanical computation was too difficult for him. He was shrewd enough to
realize he was working on a dinosaur, and that the revolution of electronic
computing was just around the corner. It was some years however before
that particular dream would become reality, and before it did Feynman had
plenty more chance to spar with the mechanical calculators. As a group
leader during the Manhattan Project at Los Alamos he created what was
mmmo.d?mg a highly pipelined human CPU, by employing a large number of
people armed with Marchant mechanical adding machines in an arithmetic
assembly line in which little cards with numbers on were passed from one

-worker to the next for processing on the machines. A number of numerical
calculations crucial to the design of the atomic bomb were performed in this
way.

The first real applications of the statistical sampling method to research
problems in physics seem to have been those of Enrico Fermi, who was work-
ing on neutron diffusion in Rome in the early 1930s. Fermi never published
his numerical methods—apparently he considered only the results to be of
interest, not the methods used to obtain them—but according to his influen-
tial student and collaborator Emilio Segré those methods were, in everything
but name, precisely the Monte Carlo methods later employed by Ulam and
Metropolis and their collaborators in the construction of the hydrogen bomb

~ {Segre 1980).

So it was that when the Monte Carlo method finally caught the attention
of the physics community, it was again as the result of armed conflict. The
important developments took place at the Los Alamos National Laboratory
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in New Mexico, where Nick Metropolis, Stanislaw Ulam and John von Neu-
mann gathered in the last months of the Second World War shortly after the
epochal bomb test at Alamagordo, to collaborate on numerical calculations
to.be performed on the new ENIAC electronic computer, a mammoth, room-
filing machine containing some 18 000 triode valves, whose construction was
nearing completion at the University of Pennsylvania. Metropolis (1980) has
remarked that the technology that went into the ENIAC existed well before
1941, but that it took the pressure of America’s entry into the war to spur
the construction of the machine.

Tt seems to have been Stan Ulam who was responsible for reinventing
Fermi’s statistical sampling methods. He tells of how the idea of calculat-
ing the average effect of a frequently repeated physical process by simply
simulating the process over and over again on a digital computer came to
him whilst huddled over a pack of cards, playing patience® one day. The
game he was playing was “Canfield” patience, which is one of those forms
of patience where the goal is simply to turn up every card in the pack, and
he wondered how often on average one could actually expect to win the
game. After abandoning the hopelessly complex combinatorics involved in
answering this question analytically, it occurred to him that you could get
an approximate answer simply by playing a very large number of games and
seeing how often you win. With his mind never far from the exciting new
prospect of the ENIAC computer, the thought immediately crossed his mind
that he might be able to get the machine to play these games for him far
faster than he ever could himself, and it was only a short conceptual leap to
applying the same idea to some of the problems of the physics of the hydro-
gen bomb that were filling his work hours at Los Alamos. He later described
his idea to John von Neumann who was very enthusiastic about it, and the
two of them began making plans to perform actual calculations. Though
Ulam’s idea may appear simple and obvious to us today, there are actually
many subtle questions involved in this idea that a physical problem with
an exact answer can be approximately solved by studying a suitably chosen
random process. It is a tribute to the ingenuity of the early Los Alamos
workers that, rather than plunging headlong into the computer calculations,
they considered most of these subtleties right from the start.

The war ended before the first Monte Carlo calculations were performed
on the ENIAC. There was some uncertainty about whether the Los Alamos
laboratory would continue to exist in peacetime, and Edward Teller, who
was leading the project to develop the hydrogen bomb, was keen to apply
the power of the computer to the problems of building the new bomb, in
order to show that significant work was still going on at Los Alamos. Von
Neumann developed a detailed plan of how the Monte Carlo method could be

3

8 Also called “solitaire” in the USA.
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implemented on the ENIAC to solve a number of problems concerned with
neutron transport in the bomb, and throughout 1947 worked with Metropolis
on preparations for the calculations. They had to wait to try their ideas out
however, because the ENIAC was to be moved from Philadelphia where it
was built to the army’s Ballistics Research Laboratory in Maryland. For a
modern computer this would not be a problem, but for the gigantic ENIAC,
with its thousands of fragile components, it was a difficult task, and there
were many who did not believe the computer would survive the journey.
It did, however, and by the end of the year it was workihg once again in
its new home. Before von Neumann and the others put it to work on the
calculations for the hydrogen bomb, Richard Clippinger of the Ballistics Lab
suggested a modification to the machine which allowed it to store programs
in its electronic memory. Previously a program had to be set up by plugging
and unplugging cables at the front of the machine, an arduous task which
made the machine inflexible and inconvenient to use. Von Neumann was in
favour of changing to the new “stored program” model, and Nick Metropolis
and von Neumann’s wife, Klari, made the necessary modifications to the
computer themselves. It was the end of 1947 before the machine was at last
ready, and Metropolis and von Neumann set to work on the planned Monte
Carlo calculations.
The early neutron diffusion calculations were an impressive success, but
. Metropolis and von Neumann were not able to publish their results, because
they were classified as secret. Over the following two years however, they
and others, including Stan Ulam and Stanley Frankel, applied the new sta-
tistical sampling method to a variety of more mundane problems in physics,
. such_as the calculation of the properties of hard-sphere gases in two and
three dimensions, and published a number of papers which drew the world’s
attention to this emerging technique. The 1949 paper by Metropolis and
Ulam on statistical techniques for studying integro-differential equations is
of interest because it contained in its title the first use of the term “Monte
Carlo” to describe this type of calculation. Also in 1949 the first conference
on Monte Carlo methods was held in Los Alamos, attracting more than a
hundred participants. It was quickly followed by another similar meeting in
Gainesville, Florida.

The calculations received a further boost in 1948 with the arrival at Los
Alamos' of a new computer, humorously called the MANIAC. (Apparently
the name was suggested by Enrico Fermi, who was tiring of computers with
contrived acronyms for names—he claimed that it stood for “Metropolis
and Neumann Invent Awful Contraption”. Nowadays, with all our com-
puters called things like XFK-23/2 we would no doubt appreciate a few
pronounceable names.) Apart from the advantage of being in New Mexico
rather than Maryland, the MANIAC was a significant technical improve-
ment over the ENTAC which Presper Eckert (1980), its principal architect,
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refers to as a “hastily built first try”. It was faster and contained a larger
memory (40 kilobits, or 5 kilobytes in modern terms). It was built under
the direction of Metropolis, who had been lured back to Los Alamos after
a brief stint on the faculty at Chicago by the prospect of the new machine.
The design was based on ideas put forward by John von Neumann and in-
corporated a number of technical refinements proposed by Jim Richardson,
an engineer working on the project. A still more sophisticated computer, the
MANIAC 2, was built at Los Alamos two years later, and both machines
remained in service until the late fifties, producing a stream of results, many
of which have proved to be seminal contributions to the field of Monte Carlo
simulation. Of particular note to us is the publication in 1953 of the paper by
Nick Metropolis, Marshall and Arianna Rosenbluth, and Edward and Mici
"Peller, in which they describe for the first time the Monte Carlo technique
that has come to be known as the Metropolis algorithm. This algorithm was
the first example of a thermal “importance sampling” method, and it is to
this day easily the most widely used such method. We will be discussing it
in some detail in Chapter 3. Also of interest are the Monte Carlo studies
of nuclear cascades performed by Antony Turkevich and Nick Metropolis,
and Edward Teller’s work on phase changes in interacting hard-sphere gases
using the Metropolis algorithm.

The exponential growth in computer power since those early days is by
now a familiar story to us all, and with this increase in computational re-
sources Monte Carlo techniques have looked deeper and deeper into the
subject of statistical physics. Monte Carlo simulations have also become
more accurate as a result of the invention of new algorithms. Particularly in
the last twenty years, many new ideas have been put forward, of which we
describe a good number in the rest of this book.

Problems

1.1 “If a system is in equilibrium with a thermal reservoir at temperature
T, the probability of its having a total energy E varies with E in proportion
to e~PE.» True or false?

1.2 A certain simple system has only two energy states, with energies Eq and
E,, and transitions between the two states take place at rates R(0 — 1) =
Ry exp[—B(E1 ~ Eo)] and R(1 — 0) = Ro. Solve the master equation (1.1)
for the probabilities wo and wy of occupation of the two states as a function
of time with the initial conditions wp = 0, w1 = 1. Show that as t — o©
these solutions tend to the Boltzmann probabilities, Equation (1.5).

1.3 A slightly more complex system contains N distinguishable particles,
each of which can be in one of two boxes. The particles in the first box have
energy Fo = 0 and the particles in the second have energy E1, and particles




