30 COMPUTING SOFTWARE BASICS

2.23 IMPLEMENTATION: GOOD ALGORITHM, EXP-GOOD.F (.C)

Write a Eomum_s that implements this pseudocode for the indicated z values.
Present your results as a table of the form

, sum - exp(-x)
x imax sum Py

where exp(-x) is calculated with the built-in exponential function.

2.24 IMPLEMENTATION: BAD ALGORITHM, EXP-BAD.F (.C)

Modify your tode that sums the series in a “good way” (no factorials) to one
that calculates the sum in a “bad way” (explicit factorials). A sample is given
U% exp-bad.f (.c).

2.25 ASSESSMENT

1. Observe how the good and bad series sumnmations fail for large z. In
* particular, notice whether there are underflows or overflows.

2. Produce a table as above.

3. Use a built-in timing function on the computer to compare the time for
each method.

Errors and Uncertainties
in Computations

Whether you like it or not, errors and uncertainties are a part of computation.
Some errors are the ones humans inevitably keep on making, but many are
introduced by the computer. Computer errors arise either because of the lim-
ited precision with which a computer stores numbers or because sometimes it
really does make mistakes (particularly in sophisticated chores like compila-
tion with optimization). Although it stifles creativity to keep thinking error
when approaching a computation, it certainly is a waste of time to generate
meaningless results because of errors. In this chapter we examine some of the
errors and uncertainties introduced by the computer. \

3.1 PROBLEM: LIVING WITH ERRORS

Let’s say you have a program of significant complexity. To gauge why errors
are such a concern, let us assume that your program has the logical flow

start - Uy - Us = ... = U, = end, (3.1)

where each unit U might be a step. If each unit has probability p of being
correct, then the probability P of the whole program being correct is P = p™.
Let’s say we have a large program, say, with n = 1000 steps, and that the
probability of each step being correct is p = 0.9993. This means that you end
up with P = ww that is, a final answer that is as likely wrong as right (not
what you want to bring to your boss). The problem is that, as a scientist,
you want a result that is correct—or at least in which the uncertainty is small.

32 ERRORS AND UNCERTAINTIES IN COMPUTATIONS

3.2 THEORY: TYPES OF ERRORS

Four general types of errors exist to plague your computations:

Blunders: typographical errors entered with your program or data, running
the wrong program, using the wrong data file, and so on. (If your
blunder count starts increasing, it is time to go home or take a break.)

Random errors: those caused by events such as fluctuation in_electronics

due to power surges, cosmic rays, or someone pulling a plug. These
.may be rare but you have no control over them and their likelihood

increases with running time; while you may have confidence in a 20-
second calculation, a week-long calculation may have to be run several
times to check reproducibility.

Approximation errors: those arising from simplifying the mathematics so
that a problem can be solved or approximated on the computer. They
include the replacement of: infinite series by finite sums, infinitesimal
intervals by finite ones, and variable functions by constants. For example

o H:
e* = Mu.m ‘ (32)
n=0
N s
~ Muoﬂum:m?,zv. (3.3)

where £(z, N) is the total absolute error. Because approximation error
arises from the application of the mathematics, it is also called algo-
rithmic error, the remainder, or truncation error.! The approximation
error clearly decreases as NV increases, and vanishes in the N = oo limit.

" Specifically for (3.3), because the scale for N is set by the value of z,
small approximation error requires N > z. So if z and N are close in
value, the approximation error will be large.

Roundoff errors: those arising very much like the uncertainty in the mea-
surement of a physical quantity encountered in an elementary physics
laboratory. Because any stored number is represented by a finite number
of bits (and consequently digits), the set of numbers that the computer
can store exactly, machine numbers, is much smaller than the set of real

- numbers. In particular, there is a maximum and minimum to machine
numbers. The overall error arising from using a finite number of digits

1The use of the term “truncation” may be somewhat confusing here because it is sometimes
also used to describe the truncation of digits in the representation of a number, an effect
more usually referred to as roundoff error.

MODEL: SUBTRACTIVE CANCELLATION 33

to represent numbers accumulates as the computer handles more num-
bers; that is, as the number of steps in a computation increases. In
fact, roundoff error causes some algorithms to become unstable with a
rapid increase in error for certain parameters. In some cases, roundoff
error may exceed the number itself, leaving what computer experts call
garbage. For example, as computed (and you may try this at home)

2(}) - 2 = 0.6666666 — 0.6666667 = —0.0000001 # 0. (3.4)

When dealing with roundoff error, you may be sensitive as to whether this
error arises from “subtractive cancellation” or “multiplicative cancellation.”
And when considering these cancellations, it is good to recall those discus-
sions of significant figures and scientific notation given in your early physics
or engineering classes. For computational purposes let us consider how the
computer may store the floating-point number

a = 11223344556677889900 = 1.12233445566778899 x 10'°. (3.5)

Because the exponent is stored separately and is a small number, we can
assume that it will be stored in full precision. The mantissa may not be stored
completely, depending on the word length of the computer and whether we
declare the word to be stored in single or double precision. In double precision
(or REAL*8 on a 32-bit machine or doubles), the mantissa of a will be stored
as two words, the most significant part representing the decimal 1.12233, and
the least significant part 44556677. The digits beyond 7 may be lost. As
we see below, when we perform calculations with words of fixed length, it
is inevitable that errors get introduced into the least significant parts of the
words.

3.3 MODEL: SUBTRACTIVE CANCELLATION

An operation performed on a computer usually only approximates the analytic
answer. The approximation arises because computers are finite. Let us use
the notation in which the number z is represented on the computer as z..
The representation of a simple subtraction is then

a=b-¢c = a =b.-c, (3.6)
a. =b(l+e)—c(l+e.), 3.7
o %o1ig2- S (3.8)

a a a

We see from (3.8) that, in the crudest sense, the average error in a is a weighted
average of the errors in b and ¢. Yet there can also be exceptional cases. The
error in a increases when b & ¢ because we subtract off (and thereby lose) the

1

s

34 ERRORS AND UNCERTAINTIES IN COMPUTATIONS

most significant parts of both numbers. This leaves the least significant parts.

This is a general rule:

If you subtract two large numbers and end up with a small one, there
will be less significance in the small one.

In other words, if a is small it must mean b ~ ¢ and so

ac
a

1+ e, (3.9)

& .
€ ~ mﬁmalmnv. (3.10)

This shows that even if the relative errors in b and ¢ cancel somewhat, they
are multiplied by the large number b/a, which, in turn, can make a differ
significantly from a., even for small €. If the signs of the numbers are such
that the magnitude of a turns out to be larger than those of either b or ¢, this
means that the numbers have been added together, in which case there is no
subtractive cancellation and we can expect an accurate representation.

A good example of subtractive cancellation occurs in the power series sum-
mation for e~ ® studied in Chapter 2, Computing Software Basics. For very
large z, the early terms in the series can be quite large, but because the fi-
nal answer must be very small, most of the large terms must be cancelled
out. Consequently, one approach is to calculate €® for very large z, and then
take its inverse to obtain e~*. This eliminates the subtractive cancellation
occurring between successive terms because all terms in e® just add.

3.4 ASSESSMENT: SUBTRACTIVE CANCELLATION EXPERIMENT

1. Reinember back in high-school when you learned that the quadratic

equation . .
az® + bz +¢ =0, (3.11)
has the analytic solution
—b+ VB2~ 4,
213 = b b mnv (3.12)
. 2a

or alternatively

z, = ~2 (3.13)

M7 b+ VB~ dac

Inspection of (3.12)-(3.13) indicates that subtractive cancellation (and
consequently an increase in relative error) arises when b2 > 4ac because
then’ the square root and its preceding term nearly cancel. If b > 0, this

“subtractive cancellation occurs in z1 and x5, while for b < 0 it occurs in
.z} and z,.

ASSESSMENT: SUBTRACTIVE CANCELLATION EXPERIMENT 35

(a) Write a program that calculates all four solutions for arbitrary
values of a, b, and c.

(b) Investigate how errors in your computed answers become large as
the subtractive cancellation increases, and relate this to the known
machine precision. (Hint: A good test case employs a =1, b = 1,

e=10"",n=1,2,3,...)

(c) Extend your program so that it will always tell you which are the
most precise solutions.

2. You also have to be careful to avoid subtractive cancellation when sum-
ming a series. For example, consider the finite sum with alternating
signs: '

2N
O I P L L L }
S5 IMUHA D" (3.14)

If you sum the even and odd values of n separately, you get two sums

z z
m:IH w:
Svll M , . .H
Sy’ = MUL 2n +an 2n+1 (3.15)

All terms are positive in this form with just a single ngwmnaoz. at
the end of the calculation. Even this one subtraction and its resulting
cancellation can be avoided by combining the series analytically:

) N
1
@y __ 1 3.16
Sy =2, 2n(2n + 1) (3.16)

n=1

While all three summations are mathematically equal, this may not be A

true numerically.

(a) Write a single-precision program that calculates S1),§(2) and
ON

(b) Assume S to be the exact answer. Make a log-log plot o% vnwm
relative error versus number of terms, that is, of log; |(Sy’ ~
&,wvv\mmv_“ versus log;q(V). Start with N = 1 and work up to
N = 1,000, 000.

(c) See whether straight-line behavior occurs in some region of your
plot.

3. In spite of the power of your trusty computer, calculating ﬁwm. sum of
even a simple series may require some thought and care. Consider the
series E

N
s =3 L (3.17)
n
=1

o

e

m
|
|
W
;

36 ERRORS AND UNCERTAINTIES IN COMPUTATIONS

which is finite as long as V is finite. When summed analytically, it does

not matter if you sum the series upward from n = 1 or downward from
n=N,

1
1
.m‘aoinv - il .
> - (3.18)
n=N
Nonetheless, because of roundoff error, when summed numerically,
Sp) mm G(down)

(a) Write a program to calculate S and S a5 functions of N.

(b) Make alog-log plot of the relative difference divided by the relative
sum versus V.

(c) Observe the linear regime on your graph and explain why the
downward sum is more precise.

3.5 MODEL: MULTIPLICATIVE ERRORS

Error in computer multiplication arises in the following way:

a=bxc = a,=b,xc,
Gc _ (1+€)(1+e)
a (1+¢)

‘ (3.19)

=

~1+e+e. (3.20)

Since ¢, and €, can have opposite signs, the error in a, is sometimes larger
and sometimes smaller than the individual errors in be and c,.

It often turns out that we can estimate an average roundoff error for a
series of multiplications by assuming that the computer’s representation of a
number differs randomly from the actual number. In these situations we have

_the analog of a random walk (which is discussed in Chapter 6, Deterministic
Randomness). 1f the direction of each step in the walk is random, then R, the
average distance covered in IV steps each of length r, is

R~ /Nr. (3.21)

Equation (3.20) indicates that each step of a multiplication has a roundoff
error of length €,,, the machine precision. Imagine making physical steps of
length ¢,,. By analogy to a random walk, the average relative error e, arising
after a large number N steps is

€ = VNep,. (322

We will mba (3.22) useful when we examine the error in algorithms.
mon those situations in which the roundoff errors do not occur in a random

A < B e

PROBLEM 1: ERRORS IN SPHERICAL BESSEL FUNCTIONS 37

manner, a careful analysis is needed to predict the dependence of the error
on the number of steps N. In some cases there may be no cancellation of
error and the relative error may well increase like Ne¢,,. Even worse, in some
recursive algorithms where the production of errors is coherent (e.g., upward
recursion for Bessel functions), the error increases like N lem.

Our discussion of errors has an important implication for a student to keep
in mind before being impressed by a calculation requiring hours of supercom-
puter time. A fast computer may complete 1010 floating-point operations per
second. This means a program running for 3 hours performs about 104 op-
erations. Therefore, even in the best case of random errors, after 3 hours we
expect roundoff errors to have accumulated to a relative importance of 107¢,y,.
For the error to be smaller than the answer, this demands ¢, < 10~7. As
a result, we can make the generalization that the results of a several-hours-
long calculation with 32-bit arithmetic (which inherently possesses only six to
seven places of precision) probably contains much noise. This fact is seldom
appreciated by users of large amounts of computer time.

3.6 PROBLEM 1: ERRORS IN SPHERICAL BESSEL FUNCTIONS

Accumulating roundoff errors often limits the ability of a program to perform
accurate calculations. Your problem is the computation of the spherical
Bessel and Neumann functions j; and n,.

Spherical Bessel functions occur in many physical problems, for example;
the 5;'s are part of the partial wave expansion of a plane wave into spherical
waves,

ekr = W}MN + 1)5i(kr) Pi(cos), (3.23)
=0

where 6 is the angle between k and r. Fig. 3.1 shows what a number of

Ji’s look like, and Table 3.1 gives some explicit values. The spherical Bessel
function ji(z) is the solution of the differential equation

2 f"(z) + 22f'(2) + [2* - 11 + 1)] f(z) =0, (3.24)

which is regular (nonsingular) at the origin. The spherical Neumann function
ni(z) is a second, independent solution of (3.24). 1t is irregular (diverges at
z = 0), and is chosen to contain just the right amount of j; needed for proper
asymptotic behavior. Specifically

J(z) = g/l + 1) for z < I,
ny(z) - —@-1nn/z"4 forzr <,
si{z) ’ ~ sin(z —in/2)/z forz >, (3.25)
n(z) ~ —cos{zx —In/2)/x forz > I,

where (20+ 1) = 1-3-5-.20+1).

38 .mxmcmm AND UNCERTAINTIES IN COMPUTATIONS

o8 - E

Jiix)

0.0 2.0 4.0 8.0 8.0 10.0 120

Fig. 3.1 The first four spherical Bessel functions, ji(z), as functions of z.

3.7 METHOD: NUMERIC RECURSION RELATIONS

One way to write a computer program to calculate j;(z) is to deduce its power
series and asymptotic expansion. You then use these to evaluate j;(z) for small
-and large x/l, respectively [possibly augmented by a direct integration of the
differential equation (3.24) for values in between]. The needed equations can
be found in [Jack 75] and [A&S 64].
The approach we investigate here is often quicker than the use of series and
has the advantage of generating the spherical Bessel functions for all I values
at one time (for fixed z). It is based on the recursion relation:

A2 Lii) (o), (), (3.20)

2041 .
p Ji(x) = Jia(z),

Jiyr(z)

(down). (3.27)

i (2)

Equations (3.26) and (3.27) both express the same relation, one written for
recurring upward and the other for recurring downward. With just a few
additions and multiplications, this recurrence relation permits a rapid and
simple computation of the entire set of j;’s for fixed z and all I. .
To recur upward we start with the fixed value of = and the known forms
for jo and ji:
jolz) = sin(z) i) = sin(z) — z cos(z)

s ; : (3.28)

We then use Aw.mmv to calculate ji(z) for all higher ! values.
As you yourself will see, this upward recurrence usually starts working

METHOD: NUMERIC RECURSION RELATIONS 39

Table 3.1 Approximate values for spherical Bessel w::nnonm oforders 3,5, and 8 atz = 0.1,
1.0, and 10

z ja(z) Js(z) Js(z)

0.10 +9.518510~6 +9.616310710 +2.90121016
1.00 +9.006610~3 +9.256110795 +2.82651008
10.0 - —3.94961072 —5.553510702 +1.255810~01

pretty well but then fails. The reason for the failure can be seen from the plots
of ji(z) and n;(z) versus . If we start at z ~ 2 and | = 0, then we see from
the graph that as we recur j; up to larger [values with the relation (3.26),
we are essentially taking the difference of two “large” numbers to produce a
“small” one. This always reduces the precision. As we continue recurring, we
are taking the difference of two “small” numbers to produce a smaller number
yet, and this increases the relative error. After a while, the ever-increasing
subtractive cancellations mean we are left with only roundoff error (garbage).

In contrast, if we use the upward recurrence relation (3.26) to produce the
spherical Neumann function n, there is no problem. In that case, the graph
makes clear that we are combining small numbers to produce larger ones,
and in this way do not have any subtractive cancellation. In that case we are
always working with the most significant parts of the numbers.

To be more specific, let us call &E the numerical value we compute as an
approximation for j;(z). Even if we start with pure 7, after a short while the
computer’s lack of precision effectively mixes in a bit of n;(z):

S@ = ji(z) + eny(z). (3.29)

This is inevitable because both j; and n; satisfy the same differential equation,
and on that account, the same recurrence relation.

The admixture of n; becomes a problem if the numerical value of n; is much
larger than that of j;, because then even a miniscule amount of a very large
number may be large. We can see from the limits (3.25) that if { 3> z, then the
Neumann function is larger, n; > 7. This means that the error behaves like
the spherical Neumann function, and consequently grows without bounds at
the origin for upward recurrence. ,

The simple solution to this problem is Miller’s device: use (3.27) for
downward recursion starting at a large value of {. This essentially takes two
small j values and produces a larger one by addition and in this way avoids
subtractive cancellation. While the error may still behave like a Neumann
function, the actual magnitude of the error will decrease quickly as we move
downward to smaller | values. In fact, we start iterating downward with

A -

40 ERRORS AND UNCERTAINTIES IN COMPUTATIONS

EEQ»Q@&:% (garbage) for &%WH and S@ » and after a short while we arrive
at very good answers. While the numerical value of g.%& so obtained will not
be correct because it depends on the explicit value assumed for “garbage,” the
ratio of the &E values will be accurate. Therefore, after you have finished

the downward recurrence, you use the analytic expression for g._m& (3.28) to

normalize .g.%& and all higher 33 values.

3.8 IMPLEMENTATION: RECURSION RELATIONS, BESSEL.F (.C)

1. Write a program to calculate j;(z) that will give “good” values for the
first 25 [values for r = 0.1,1.0,10.0 [“good” means a relative error

=~ 107%(10~*) for single (double) precision]. See Table 3.1 for some
sample values.

N

Try it with both upward and downward recursion, but don’t try too hard

for upward recursion. (Try using single precision in order to see error
effects more quickly.)

3.9 ASSESSMENT

Q?o. results of the downward recursion for different, large values of the
starting [, showing the convergence and stability of your results.

ot

2. Compare the upward and downward recursion methods, printing out J,

. - (d 1 1
3™, 3%, and the relative difference

" =
381+ i) :

down) _

(3.30)

3. The errors in the upward recursion depend on z, and for certain values
of z, .con_ up and down recursions give similar answers. Explain the
reason for this and what it tells you about your program.

.w;o PROBLEM 2: ERRORS IN ALGORITHMS

ZmBoa.om_ algorithms play a vital role in computational physics. You start
with a EQEQ.: theory or mathematical model, you use algorithms to convert
the mathematics into a calculational scheme, and, finally, you convert your

scheme into a computer program. Your problem is to take a general algorithm,
and decide

MODEL: ERRORS IN ALGORITHMS 41

1. Does it converge?
2. How precise are the results when it ‘does converge?

3. How expensive (time consuming) is.it to run ?

3.11 MODEL: ERRORS IN ALGORITHMS

An algorithm is often characterized by its step size h or by the number of
steps IV it takes to reach its goal. If the algorithm is “good,” it should give
the exact answer in the limit A - 0 or N = oo. Every algorithm contains
an approzimation error; that is, there is a difference between the exact result
and the result of the algorithm. If you know the approximation error as a
function of the number of terms N used in the approximation, you may be
able to judge “when enough is enough already.” Yet do not be misled into
believing the “error” has vanished because you made N so ridiculously large
that the approximation error must be small. The total error in your calculation
also includes roundoff errors, systematic errors, and possibly bad input data,
all of which tend to increase when you make the computer work harder.

In general, as you continue to decrease the step size h or increase the
number of steps N, you will reach a point where the roundoff error has grown
large enough to exceed your approximation error. Clearly, the optimum choice
of your parameters are those that minimize the total error. Unfortunately, in
many cases there is no simple expression to minimize. Yet by using some of
the methods described here, you may be able to determine the behavior ¢f

your error and 8o gain some control over it.

3.11.1 Total Error

Let us assume that an algorithm takes a large number N steps to get a good
answer and that the approximation error approaches zero like

~Z (3.31)

€aprx =~ ﬁ
Here o and § are empirical constants that would change for different algo-
rithms, and may be “constant” only for N — co. As indicated at the begin-
ning of this chapter, the roundoff error keeps accumulating as you take more
steps; that is, it increases with N. If the roundoff errors in the individual
steps of your algorithm are not correlated, then we know from our previous

discussion that
. €ro X z\mms: (3.32)

42 ERRORS AND UNCERTAINTIES IN COMPUTATIONS

Evoammsmmgmﬂswo?nm vnmammo?Hrmﬁog_mﬂgﬂo:_avm%m sum of the
two: :

€tot = €aprx + €ro, Awwwv
a3

Although no discussion of errors is exciting (except maybe for masochists),
it is useful. We assume we have 2 test case for which a good answer is known
either analytically or from some other source. By comparing the test case
answers to those computed, we deduce the total error €, in the calculation.
If we then plot log(ecot) against log(V), we can use the slope of this graph [the
power of N in the expansion of the error (3.34)] to deduce which error term
is dominant for differing N values. Alternatively, by starting at very large
N values Srmwm,ém expect there to be essentially no approximation error, we
¢an move in to smaller values of N and thereby deduce the N behavior of the
approximation error.

If you run your test case with N much smaller than o /N? . then the approxi-
mation error term in (3.34) should dominate and the slope should be —3. If
N is much larger than v/N. €m, then the roundoff error term should dominate
and the slope should be w If your test case does not have this behavior, there
may be a problem in your program, or the model may be too simple.

3.12 METHOD: OPTIMIZING WITH KNOWN ERROR BEHAVIOR

In order to see H.soﬁm clearly how different kinds of errors balance off each other,
let us now turn to the relative size of errors. We will assume the approximation
error (3.31) hasa =1,8=2: .

1
€aprx e © (3.35)

If the total error is given by (3.34), then it will have an extremum when

&mnau 3 4
= N2 =—, (3.
av =0 =@ o (3.36)

Because a maximum total error occurs for N = oo, the extremum should be a
minimum. For a computer with 32-bit words and single precision, ¢,, ~ 10-7,
$0 the minimum total error (3.36) occurs when

5 4
NZT ~
10-7

= N 1009, (3.37)

12

€tot

1
73 + VNen (3.38)

METHOD: EMPIRICAL ERROR ANALYSIS 43

= 8x1077+33x1077 ~4x1075. (3.39)

This shows that for a typical algorithm, most of the error is due to roundoff,
Observe, too, that even though this is the minimum error, the best we can do
is to get some 40 times machine precision (the double-precision results are
better).

Seeing that total error is mainly roundoff error, an obvious way to decrease
the total error is to decrease roundoff error by using a smaller number of steps
N. Let us assume we do this by finding another algorithm that converges
more rapidly with IV, for example, one for which the approximation error
behaves like

€aprx 2 M<.wM. (3.40)
The total error is now 9
, € = 77 + VNem. (3.41)
The number of points for minimum error is found as before
&mgn 9 16 3.42
=0 = N2 =_- (3.42)
dN €m’
em~10"7 = N~67, (3.43)
2
o = gt VNem (3.44)

= 1x10774+8x107" ~9x10~". (3.45)

The error is now smaller by a factor of 4 ,SS. only ww. as many steps needed.
Subtle are the ways of the computer. In this case it is not that the better
algorithm is more elegant, but rather, by being quicker and using fewer steps,
it produces less roundoff error.

3.13 METHOD: EMPIRICAL ERROR ANALYSIS

Let us say you have a program you want to optimize for BEE.E.B total error,
yet you do not know (or do not want to go to the trouble wm deriving) é:.& the
approximation error is. As just discussed, you know that in some approximate
and general sense, the roundoff error e,, is related to the machine precision
€ém and the number of calculational steps N by

€ro X /\Nqu:. Aub.@v

Because the approximation error should get smaller with larger NV, the round-
off error ,, should dominate the total error for very large N.

- o iarnaane

44 ~ ERRORS AND UNCERTAINTIES IN COMPUTATIONS

Let us assume that the exact answer to your problem is .4, while that
obtained by your algorithm after N stepsis A(IV). The trick then is to examine
the behavior of A(N) for values of N large enough for the approximation
error to have its asymptotic value (the term with the smallest inverse power of
NN dominates), but not too large to dominate roundoff error. In this case we
can write

AN) ~ A+ Nww (3.47)

where o and 3 are unknown constants. We now run our computer program
with a large number N of steps, and again with twice that number of steps. If
roundoff error is not yet dominating, then

A(N) - A@2N) ~ %,m (3.48)

To actually see if these assumptions are correct, and see graphically the
number of decimal places to which the solution has” converged, you plot
log |A(N)/A(2N) — 1| versus logyg N. That part of your plot that is a
straight line indicates the region in which the assumptions are valid, and the
slope gives the value for — 3.

If N is too small, we would not be in the asymptotic region for the approxi-
mation error, and the graph will not be a straight line. As NV gets much larger,
roundoff error begins to enter and the graph departs from the previous straight
line (it should change slope to something like +WV.

All this means that you can figure out what is happening with your algorithm
by experimenting: start off with small N and increase it until you get a
reasonably - straight-line graph. Then increase NV and watch as the graph
changes slope to a positive one appropriate to roundoff error. Because the
ordinate is the logarithm of the relative error to the base 10, it immediately
tells you the number of decimal places of precision obtained.

3.14 ASSESSMENT: EXPERIMENT

Consider the series for the exponential function

mls - HI.H.TW..:IMI_. AHNAOOV. @on
N n
~ 3 (z2)" (3.50)

n=

To Boﬂ.wow&_w see the effects of error accumulation in this algorithm, use
single precision for your programming.

1. Write a program that calculates e~ as the finite sum (3.50).
2. Try z = 1, 10, and 100.

ASSESSMENT: EXPERIMENT 45

3. Examine the terms in the series for z ~ 10 and observe the signifi-
cant subtractive cancellations that occur when large terms add together
to give small answers. See if better precision is obtained by using
exp(—z) = 1/ exp(z) for large z values.

4. By progressively increasing N, use your program to experimentally de-
termine whether there is a range of N for which the approximation error
is asymptotic and yet larger than roundoff error. (You may assume that
the built-in exponential function is exact.)

5. Determine whether (3.47) is valid and, if so, determine the values for 3.

Because this series summation is such a simple and correlated process, the
roundoff error does not accumulate randomly as it might for a more compli-
cated computation, and we do not obtain the error behavior (3.47). To really
see this error behavior, try this test with the integration rules discussed in
Chapter 4, Integration.

s,
A

B e s e

