16 COMPUTING SOFTWARE BASICS

DO action 1

F

THEN action 2

«

AND THEN action 3

Fig. 2.2 A simple (linear) sequence of actions.

2.8 METHOD: STRUCTURED PROGRAMMING

You should always be striving to build structures into your program that
clearly reveal the content and logic of the program. The physical structuring
of your code can be built by using successive indentations for different sections
(ignored by.the compiler); by the frequent and judicious use of comments and
spacings; and by using upper- and lowercase letters to improve clarity (the
Fortran compiler is case-insensitive). You may, nonetheless, wish to avoid non-
commented blank lines because they will not always be accepted by compilers.

On a more conceptual level, modern high-level languages contain building
blocks to provide structure to programs; they have been proven to be logically
sufficient for all programming needs. The elements that are used to construct
the logical building blocks are given in Fig.2.3. Some common structures are
illustrated in Figs.2.2-2.7. These logical building blocks start with the linear
sequence, shown in Fig. 2.2, and include:

Repeat N times, Fig.2.4: Do all instructions up to the end of loop indicator
Endo N times.

If-then-else, Fig.2.5: Jf a certain condition is met, Then execute some
instructions, or Else, do something else. When one of these possibilities
is finished, this sequence ends.

Repeat unknown number of times, Fig.2.6: While some condition is met,
keep repeating these instructions. If the condition is no longer met, go
to statements beyond Endwhile.

You will note that these structures have well-defined beginnings, endings,
and conditions for their actions, all of which help clarify the program flow. Of

METHOD: STRUCTURED PROGRAMMING 17

Beginning or end of algorithm
Input or output of information

Execution of a command

Branching point)
The value of a logical expression
determines which branch to take.

Beginning of a structure which
will be repeated severat times.

JOUIU

A subalgorithm whose exact
structure is explained elsewhere.

Fig. 2.3 The logical elements used to construct the requisite logical structures of
programs. v

While COUNT \ true

while COUNT < MAX

action

COUNT = COUNT + | increment COUNT by 1

endwhile

— w

Fig. 24 The Repeat Loop MAX times structure and pseudocode. This is a special
case of the While loop.

18 COMPU
TING SOFTWARE BASICS METHOD: PROGRAMMING HINTS 19

White

logical true

expression it logical expression is true ox_MM_MM on while logical expression A is true
A
faise then action1
action 1
E eise action 2
5 logical
h endif expression * if logical expression B is true
B
then action 2
Fig. 2.5 The If-then-else structure and pseudocode. E else action 3
endif
IS
false _<<_,.___m_
ogical while logical ion i
expression o] expression is true

Fig. 2.7 A combination of While and If-then-else structures.

action action

endwhile

your mind on track and be useful later (a natural action for those who

Fig. 26 The While structure and pseudocode. talk to themselves or keep a diary).

o Use descriptive names for variables and subroutines, like mass and temp,
and keep them similar to the variables employed in standard texts and
papers. Describe your variables in comment statements.

course, actual programs often contain more complicated logic, yet as we see in
Fig.2.7, these basic structures may be. combined to provide a richer structure.

o Declare all variables (do not use the Implicit statement in Fortran unless
you make it an Implicit none). Combined with cross-referenced maps,
this helps you pick up spelling, typographical, and forgetfulness errors. -

2.9 METHOD: PROGRAMMING HINTS

Some specific programming hints that may help you implement the preceding

general rules for writing programs are ¢ Avoid global variables.

o In Fortran, use statement labels only for Continue and Format state-

¢ Always keep an updated, working version of your program; make modi-
; ments.

fications on a copy.

¢ Use the standard version of the programming language if you want to
port-your code to another computer or immediately run it when future
systems become available. (Avoid local language extensions.)

o Avoid Equivalence statements. They make the logic too hard to follow.

e Remember that compilers make errors, too. You’ll want to be particu-
larly careful if your programming is subtle or clever or highly convoluted.
Comparing results derived with different levels of optimization, different
flags, or reorganized program parts may help reveal compiler bugs (the

¢ Add Emd@ of comments and documentation as you write the code, with
at least a short description about each subprogram. This will help keep

20 COMPUTING SOFTWARE BASICS

least-optimized answer is usually your best bet). Using program check-
ers like lint is also recommended. And if you are fortunate enough to
have different machines around, you can try different compilers.

2,10 PROBLEM 2: LIMITED RANGE OF NUMBERS

Computers may be powerful, but they are finite. A problem in computer
design is how to represent a general number in a finite amount of space, and
then how to deal with the approximate representation that results.

2.11 THEORY: NUMBER REPRESENTATION

If we are given the digits 0 and 1 as the microscopic units of memory (bits),
it should be no great surprise that all numbers are ultimately represented
in binary form. Correspondingly, there are only 2V integers that can be
represented with N bits. Because the sign of the integer is represented by the
first bit (a zero bit for positive numbers), this leaves the remaining N — 1 bits
to represent the value of the integer. Therefore N-bit integers will be in the
range [0,2V!]. Already we begin to see the limitations.

Long strings of zeros and ones are fine for computers, but are awkward
for people. Consequently, binary strings are converted to octal, decimal, or
hezadecimal numbers before results are communicated to people. Octal and
hexadecimal numbers are nice because the conversion loses no precision, but
not so nice because our decimal rules of arithmetic do not work for them.
Converting to decimal numbers make the numbers easier for us to work with,
but we often lose precision.

‘A description of a particular computer system will normally state the num-
ber of bits used to store a number (also called word length). This word length
is often expressed in bytées, where

1byte = 1B % 8bits. (2.1)
Conventionally, storage size is measured in bytes or kilobytes. Be careful, not
everyone means the same thing by a thousand:

1K % 1KB = 2'%ytes = 1024bytes. (2.2)

This is often -(and confusingly) compensated for when memory size is stated,
for example -

K

1
512K = 2%bytes = 524, 288byt _
yLes » 40Dy eS8 X 1 024by tes

(2.3)

METHOD: FIXED AND FLOATING 21

Conveniently, 1 byte is also the amount of memory needed to store a single
character, like the letter “a” or * This adds up to a typical typed page
requiring ~3 KB.

The memory chips in some of the older personal computers used 8-bit
words. This means the maximum integer was 27 = 128 (7 because one
bit is used for the sign). Trying to store a number larger than possible
(overflow) was common on these machines, sometimes accompanied by an
informative error message and sometimes not. At present, most workstation-
class computers use 32 bits for an integer, which means that the maximum
integer is 237 ~ 2 x 10°. While at first this may seem a large range for
numbers, it really isn’t compared to the range of sizes encountered in the
physical world. For example, the ratio of the size of the universe to the size
of a proton is 10%4.

. 9

2.12 METHOD: FIXED AND FLOATING

Real numbers are represented on computers in either fixed-point or floating-
point notation. In fixed-point notation, the number z is represented as

Zgy = sign X (02" + 12" T g2l 4 a2, (24)

That is, one bit is used to store the sign and the remaining [V — 1 bits are used
to store the ¢; values (n + m = N — 2). The particular values for N, m, and
n are machine-dependent. For a 32-bit machine, the integers are typically 4
bytes in length and in the range

~2147483648 < integer x 4 < 2147483647 . 2.5)

The advantage of the representation (2.4) is that you can count on all fixed-
point numbers to have the same absolute error of 27™1 [the term left off
the right-hand end of (2.4)]. The corresponding disadvantage is that small
numbers (those for which the first string of o values are zeros) have large
relative errors. Because in the real world relative errors tend to be more
important than absolute ones, fixed-point numbers are used mainly in special
applications (like business).

Your scientific work will mainly use floating-point numbers. In floating-
point notation, the number z is stored as a sign, a mantissa, and an exponential
field expfid. The number is reconstituted as

Zgow = (—1)* x mantissa x 2684 -biss, (2.6)

Here the mantissa contains the significant figures of the number, s is the sign
bit, and the actual exponent of the number has the bias added to it and is then
stored as the exponential field expfld.

oo

o

22 COMPUTING SOFTWARE BASICS

Just as introducing a sign bit guarantees that the mantissa is always pos-
itive, so introducing the bias guarantees that the number stored as the ex-
ponent field in (2:6) is always positive (the actual exponent of the number
can, of course, be negative). The use of bias is rather indirect. For example,
a single-precision 32-bit word may use 8 bits for the exponent in (2.6) and
represent it as an integer. This 8-bit integer “exponent” has a range [0, 255].
Numbers with actual negative exponents are represented by a bias equal to
127, a fixed number for a given machine. Consequently, the exponent has the
range {127, 128] even though the value stored for the exponent in (26)isa
positive number. Of the remaining bits, one is used for the sign and 23 for
the mantissa.

It is important to remember that single-precision (4-byte) numbers have

6-7 decimal places of precision (1 part in 2%%) and magnitudes typically in the

range

10™** < single precision < 10%8. « (2.7
The mantissa of a floating number is represented in memory in the form
mantissa =mqy X 271 +my x 272 4 .. £ gy x 2723, (2.8)

with just the m; stored, similar to (2:4). As an example, the number 0.5 is
stored as

-2 0 011t 1111 1000 0000 0000 0000 0000 000,
[} Ot [N 1 F et

+»fihiere the bias is 0111 1111 = 127;0.

In order to have the same relative precision for all floating-point numbers, it
is standard to normalize the number so that the leftmost bit is unity, m; = 1.
Once this convention is adopted, the m; does not even have to be stored and
the computer only needs to recall that there is a phantom bit. During the
processing of numbers in a calculation, the first bit of an intermediate result
may become zero, but this will be corrected before the final number is stored.

"Typically, the largest possible floating-point number for a 32-bit machine

0 1111 1111 1111 1111 1111 1131 1111 111

has the value 1 for all its bits (except sign) and adds up to 2128 = 3.4 x 1038,
Typically, the smallest possible floating-point number,
0 0000.0000 1000 0000 0000 0000 0000 000

has the value 0 for almost all its bits and adds up to 2128 = 2.9 x 10~39. As
built in by the use of bias, the smallest number possible to store is the inverse

“of the largest.

If you write a program requesting double precision, then 64-bit (8-byte)
words will be used in place of the 32-bit (4-byte) words. With 11 bits used for
the exponent and 52 for the mantissa, double-precision numbers have about
16 decimal places of precision (1 part in 25%) and typically have magnitudes

IMPLEMENTATION: OVER- AND UNDERFLOWS, OVER.F (.C) 23

in the range
107322 < double precision < 10%%8 . (2.9)

2.13 IMPLEMENTATION: OVER- AND UNDERFLOWS, OVER.F (.C)

Write a program to test for the underflow and overflow limits (within a factor
of 2 at least) of your computer system and of your favorite computer language.
A sample pseudocode is

under = 1.
over = 1.
begin do N times
under = under/2.
over = over * 2.
write out: loop number, under, over
end do

You may need to increase N if your initial choice does not lead to underflow
and overflow. Be careful to notice whether your computer’s implementation
of your programming language converts overflows, as well as underflows, to
zero. (Converting underflows to zero is usually a good thing to do; converting
overflows to zero is usually a good way to cause a disaster.}) Notice that if
you want to be more precise regarding the limits of your computer, you may
want to multiply and divide by a number smaller than 2.

1. Check where under- and overflow occur for single-precision floating-point
numbers.

2. Check where under- and overflow occur for double-precision floating-
point numbers.

3. Check where under- and overflow occur for integers (you need to multi-
ply and subtract 1 to see the effect).

2.14 MODEL: MACHINE PRECISION

One consequence of a computer’s memory scheme for numbers is that the num-
bers can be recalled with only a limited precision. While the exact precision
depends on the computer, single precision is usually 6-7 decimal places for
a 32-bit word machine, and double precision is usually 15-16 places. (Some
symbolic manipulation programs can store numbers with infinite precision;
that is, the word size increases as the requisite precision increases.) To see
how machine precision affects calculations, consider the simple addition of

24 COMPUTING SOFTWARE BASICS

two 32-bit words:
7 + 10x1077=? (2.10)

The computer fetches these numbers from memory and stores the bit patterns

7 =0 10000010 1110 0000 0000 0000 0000 000, (2.11)
10-7 = 0 01100000 1101 0110 1011 1111 1001 010, (2.12)

in working registers (pieces of fast-responding memory). Because the expo-
nents are different, it would be incorrect to add the mantissas. So the exponent
of the smaller number is made larger while progressively decreasing the man-
tissa by shifting bits to the right (inserting zeros) until both numbers have the
same exponent:

1077 = 0 01100001 0110 1011 0101 1111 1100101 (0)
= 0 01100010 0011 0101 1010 1111 1110010'(10) (2.13)

’

= 0 10000010 0000 0000 0000 0000 0000 000 (0001101 - --)
= 7 + 1.0x1077=7 (2.14)

Because there is no more room left to store the last digits, they are lost. After
all this hard work, the addition gives 7. This means a 32-bit computer only
stores 6—7 decimal places and in effect ignores the 10~7.

The preceding loss of precision is categorized by defining the machine pre-
cision €, as the maximum positive number that, on the computer, can be
added to the number stored as 1 without changing the number stored as 1:

lo+€m =1 (2.15)

where the subscript ¢ is a reminder that this is the number stored in the
computer’s memory. Likewise, z., the computer’s representation of z, and
the actual number z, are related by

Te=z(l+e), le|<em.

In other words, e =~ 107 for single precision and 10~6 for double precision.

If a single-precision number z is larger than 2128, an overflow occurs. If z
is smaller than 27128 an underflow occurs. The resulting number z. may end
up being-a machine-dependent pattern, or NAN (not a number), or unpre-
dictable. Because the only difference between the representations of positive
and negative numbers on the computer is the sign bit of one for negative

numbers, the same considerations hold for negative numbers.
In our experience, serious scientific calculations almost always require dou-
ble precision, especially on 32-bit machines. And if you need double precision

in one part of your calculation, you probably need it all over, and that also
means double-precision library routines.

IMPLEMENTATION: DETERMINING YOUR PRECISION, LIMIT.F (.C) 25

2.15 IMPLEMENTATION: DETERMINING YOUR PRECISION,
LIMIT.F (.C)

Write a program to determine the machine precision € of your computer system
(within a factor of 2 at least). A sample pseudocode is
eps 2 1.
begin do N times
eps = eps/2, Make smaller
one = 1, + eps
write out: loop number, one, eps
end do

1. Check the precision for single-precision floating-point numbers.

2. Check the precision for double-precision floating-point numbers.

To print out a decimal number, the computer must make a conversion from
its internal format. Not only does this take time, but if the internal number is
close to being garbage, it’s not clear what will get printed out. So if you want
a truly precise indication of the stored numbers, you want to avoid conversion
to decimals and, instead, print them out in octal or hexadecimal format.

2.16 PROBLEM 3: COMPLEX NUMBERS AND INVERSE
FUNCTIONS

The language of physics is mathematics. Therefore using a computer to do
physics ultimately means using it to do mathematics. But as we have seen,
mathematics is not the native language of computers. The problem for you
to investigate is the way your computer handles complex numbers and inverse
trigonometric functions.

2,17 THEORY: COMPLEX NUMBERS

A complex number z is defined in terms of its real and imaginary parts as

z=z+14y. (2.16)

:

It is also defined in terms of its magnitude r and phase ¢ as

z = re', : (2.17)

VIE+4?, ¢ =tan"! @.V . (2.18)

where r

‘COMPUTING SOFTWARE BASICS

; imaginary

Fig. 2.8 (Left) The complex plane represented as two Riemann sheets attached through a

cut appropriate to the \/Z function. (Right) The cut complex plane. The cut prevents us from
getting to-a’ from d' with a small rotation.

With this second definition we see that the square root and logarithms of z
must be .

S VE o= R (2.19)
Inz = Inr+id, (2.20)

where Inr is the standard natural logarithm of a real number. That being so,
while the phase ¢ can have an arbitrary multiple of 27 added to it without
changing the location of z in the complex plane, this addition does change the
values of \/z and In z. (Although adding 4~ to the phase ¢ returns both z and
/7 to the same complex plane location, the In function never returns.)

A way of avoiding this apparent multivalueness of functions is to agree not
to encircle the origin z = 0. To build this agreement into the mathematics,
a branch cut is drawn along the intersection of sheets, in this case from the
branch point z = 0 to z = o0, as shown in Fig. 2.8. One then agrees not to
pass through this branch cut. Typically the cut lies along the real z axis, or
the imaginary y axis, although any line will do.

On the left'in Fig. 2.8 we show a complex plane made up of two Riemann
sheets attached through the cut in the shaded region. A rotation of 27 takes
us from q to b but not back to a. After point b, the rotation moves to point ¢

IMPLEMENTATION: COMPLEX Ecimm.mw COMPLEX.C (.F) 27

on a second Riemann sheet, then to d, and, after a total rotation of 47, back
down to the first sheet at a. On the right in Fig. 2.8 we show the conventional
complex plane. Becase there is a cut along the positive z axis (as occurs for
the /z), the points a' and d' are not as close to each other as are the points
< and ¥'.

Once the complex plane is cut, we imagine crossing the cut, but without
getting into multivalueness troubles, by passing onto another Riemann sheet
that is joined to the original sheet along the cut. For a doubled-valued function
like 4/z, passing through the cut twice, once from each sheet, returns us to our
starting point. While this ambiguity may not be much of a problem for clever
mathematicians, it is for operationally minded computers who only know to
do what they are told to do. For you to uncover if this is a problem for your
computer, or how some programmer has decided to resolve the ambiguity, you
need to work out these exercises.

2.18 IMPLEMENTATION: COMPLEX NUMBERS, COMPLEX.C (.F)

Fortran is nice enough to do complex arithmetic and evaluate inverse functions
for you. Some C compilers, like those from Borland and Linux, have extensions
to handle complex numbers, but a standard C compiler does not. Problem-
solving environments, like Maple and Mathematica, are usually also good with
complex numbers. ,

Write a program that gets the computer to print a table of the form

é z y e* Nz Inz atan{y/z) atan2(y, z)
47 * * * * * B *
15n/4 * ** x * * *
an * * * * * * *

Here ¢ will increase with uniform steps, and the columns marked +/Z, log,
atan, and atan2 are to be the computer’s output. (If your compiler cannot
handle complex numbers, forget about the z terms.)

1. Make a plot of the output phases obtained with the arctangent functions
versus the input phase ¢. [Notice that if r = 1 in (2.20), then the In
function is purely imaginary.]

2. If your plotting program appears to be making some strange jumps,
you may need to use more points near a multiple of /2 and avoid being
precisely “at” a multiple of 7 /2.

28 COMPUTING SOFTWARE BASICS

3. If your compiler is not bright enough to automatically use a complex
library routine when you feed it a complex number, you may have to

look up the particular function name required to evaluate a complex
function.

4. State clearly where the computer has placed the cuts for sqrt, In, atan,
and atan2 functions.

2.19 EXPLORATION: COMPLEX ENERGIES IN QUANTUM
MECHANICS

A particle not under the influence of a potential is called “free.” In quantum
mechanics, a free particle moving in one dimension is deseribed by the plane
wave

B(z,t) = e?he—wt), (2.21)

We obtain the probability density p for finding this particle at position z at
time ¢t by computing the squared modulus of the wave function p = |¢(z,1)|?.
A trick used to describe an unstable system that decays ezponentially in time
is to say it can still be described by (2.21), only now with the complex w
(energy).

hw = E, —il'/2. (2.22)

(Of course, if it decays, it cannot truly be “free,” but that is why this is a
model and not a theory.)

1. Show analytically that for positive or negative values of T, the proba-
bility p decays or grows (respectively) with increasing time ¢.

2. Show analytically that if energy and momentum are related in the usual
way
wn
| P = 5, (2.23)
then the momentum k also becomes a complex number, and the proba-
bility p then decays or grows with increasing distance .

3. Write a program to calculate & for arbitrary values of E, and I'. Make
the program interactive; that is, have it read E, and I from the terminal
and print all possible k values on the screen of the terminal.

4. Check nrm momentum values predicted by your program as both E, and
I" change sign. Describe the physical reasonableness of its predictions.

PROBLEM 4: SUMMING SERIES 29

2.20 PROBLEM 4: SUMMING SERIES

A classic numerical problem is the summation of a series to evaluate a function.
For this exercise we examine the power series for the exponential function:

2 Hw .

«la"ula+m._.lﬂ+:. ?»Aoov. Am.w&
We want to use the series (2.24) to calculate e~ for z = 0.1, 1, 10, 100, and
1000, with an absolute error in each case of less than one part in 108. But
how do we know when to stop summing? (Do not dare say or even think of
saying, “When the answer agrees with the table or with the built-in library
?bnsou.:v ‘

2.21 METHOD: NUMERIC

While we really want to ensure a definite accuracy for e~2, that is not so
easy to do. What is easy is to assume that the error in the summation is
approximately the last term summed (this also assumes no roundoff error,
which we will discuss soon). To obtain an absolute error of one part in 108,
we can stop the calculation when

<1078, (2.25)

where term is the last term in the series (2.24), and sum is the accumulated
sum.

2.22 IMPLEMENTATION: PSEUDOCODE

A pseudocode for performing the summation is

term = 1, sum = 1, eps = 10*»(-8) .) Initialize.
do
term = -term * x/i New term in terms of old.
sum = sum + term Add in term.
while abs(term/sum) > eps Break iteration if accurate.

end do

You can see that this technique saves time by avoiding raising z to an ever-
increasing power, and by never calculating the factorial.

