Computational Physics

Problem Solving with Computers

RUBIN H. LANDAU

Professor of Physics

Oregon State University

MANUEL JOSE PAEZ MEJi A

Professor of Physics
University of Antioguia

Contributors

Hans Kowallik and Henri Jansen

W

A Wiley-Interscience Publication

JOHN WILEY & SONS, INC.

New York / Chichester / Weinheim / Brisbane / Singapore / Toronto

—

Introduction

1.1 THE NATURE OF COMPUTATIONAL SCIENCE

Computational science explores models of the natural and artificial world
with the aim of understanding them at depths greater than otherwise possi-
ble. This is a modern field in which computers are used to solve problems
whose difficulty or complexity places them beyond analytic solution or human
endurance. Sometimes the computer serves as a super—calculating machine,
sometimes as a laboratory for the numerical simulation of complex systems,
sometimes as a lever for our intellectual abilities, and optimally as all of the
above.

The focus of a computational scientist is science. The aim of this book is
to teach how to do science with computers, and, in the process, to teach some
physics with computers. This is computational science but not “computer
science.” Computer sciences studies computing for its own intrinsic interest
and develops the hardware and software tools computational scientists use.
This difference is not just semantic or academic. Computational scientists
are interested in computer applications in science and engineering, and their
values, prejudices, tools, organizations, goals, and measures of success reflect
that interest. For example, a computational scientist may view a particular
approach as reliable, self-explanatory, and easy to port to sites throughout
the world, while a computer scientist may view it as lengthy and inelegant;
both are right, because both are viewing it from their different, disciplines.

Computational science is a team sport. It draws together people from
many disciplines via a commonality of technique, approach, and philosophy.
A computational scientist must know a lot about many things to be successful.

3

4 INTRODUCTION

But because the same tools are used for many problems in different fields,
he or she is not limited to one specialty area. A study of computational
science helps broaden horizons, which is a welcome exception to the stifling
subspecialization found in so much of science.

Traditionally, physics divides into experimental and theoretical approaches;
computational physics requires the skills of both and contributes to both.
Transforming a theory into an algorithm requires significant theoretical in-
sight, detailed physical and mathematical understanding, and mastery of the
art of programming. (The sections in this book are labeled to reflect these
steps.) The actual debugging, testing, and organization of scientific programs
is like an experiment. The simulations of nature with programs are virtual
experiments. Throughout the entire process, the synthesis of numbers into
generalizations, predictions, and conclusions requires the insight and intuition
common to both experimental and theoretical science. And as visualization
techniques advance;! computational science enters into and uses psychology
and art; this, too, makes good science because it reveals the beauty contained
within a theoretical picture of nature and permits scientists to use extensive
visual processing capabilities of their brains to “see” better their discipline.

1.1.1 How Computational Scientists Do It

A computational scientist uses computers in a number of distinct ways, with
new ways not necessarily eliminating old ones.

o In the classic approach, a scientist formulated a problem and solved
as much as possible analytically. Only then was the computer used to
determine numerical solutions to some equations or to evaluate some
hideously complicated functions. In many cases, computing was consid-
ered a minor part of the project with little, if any, discussion of technique
or error.

e A computational scientist formulates and plans the solution of a problem
with the computer and program libraries as active collaborators. Use
is made of past analytic and numerical advances during all stages of
work. And, as the need arises, new analytic and numerical studies are
undertaken.

e Ina &mmnmcn., but by now also classic scientific approach, computers
play-a key role from the start by simulating the laws of nature. In
‘these mmBEmao:m, the computer responds to input data as a natural
system might to different initial conditions. Examples are the computer
tracing of rays through an optical system and the numerical generation
of random numbers to simulate the radioactive decay of nuclei.

!There are Web tutorials describing visualization and animation techniques.

AIMS OF THIS BOOK 5

e Another modern use of computers is to create problem-solving environ-
ments, such as Maple, Mathematica, Macsyma, and Matlab, which hide
most of the details from the user and which often include symbolic ma-
nipulations as might be done analytically.

o One of the most rewarding uses of computers is visualizing the results
of calculations with 2-D and 3-D plots or pictures, and sometimes with
color shading and animation. This assists the debugging process, the
development of physical and mathematical intuition, and the enjoyment
of the work. Visualization is incorporated into as many of our projects
as possible and especially in the Web tutorials associated with this book.

¢ Finally, many personal computer applications also have value in com-
putational science. For example, a numerical spreadsheet is a helpful
way to analyze data as well as the results of calculations, and hypertert
and World Wide Web documents are true advances in storing various
types of information that supplement, even if they do not replace, the
lab notebook and research paper.

1.2 AIMS OF THIS BOOK

To emphasize our general purpose of teaching how to do science with com-
puters, the paradigm suggested by the Undergraduate Computational Science
and Engineering Project [UCES] will be followed:

Problem Model Method Implementation
(Physics) (Discrete) (Symbolic) (C/Fortran)
(Life science) (Continuous) (Numeric) (High-performance)
3
Assessment
(Visualization)
(Experimentation)

This is not easy to do when developing basic skills, but it will work well once
projects deal with physical problems.

When the students are relieved of the burden of extensive programming,
they should be able to “pass lightly” through the background material and
have a personal experience with many projects. This personalization of the
material acts as stimulation for further study, discussion, and exploration.

The specific aims of the projects are

¢ To teach the use of scientific computers in thinking creatively and mo_ﬁ,nm
problems in the physical sciences through direct experience.

6 INTRODUCTION

* To advance the development and organization of thinking about physical
systems in a manner compatible with advanced computational analysis.

¢ To use the graphic capabilities of scientific computers to study and teach
the visualization of numerical solutions into highly interpretable forms.

e To instill attitudes of independence, personal communication, and or-
ganization, all of which are essential for mastery of complex systems.

¢ To understand physical systems at a level often encountered only in a

research environment, and to use programming to deepen that under-
standing. -

¢ To understand why hard work and properly functioning and powerful
software and hardware do not guarantee meaningful results. As with
experimental physics, there are accuracy and applicability limits that
often determine when viable results are generated.

* To instill an objected-oriented view of problem solving.

1.3 USING THIS BOOK WITH THE DISK AND WEB

There are references throughout this book to programs and tutorials available
on the floppy diskette accompanying the text and through the World Wide
Web (the “Web”). These are meant as a supplement to the text, to be used
at the discretion of the student and instructor.

Programming is a valuable skill for all scientists, but it is also incredibly
demanding and time ‘consuming. For this reason the diskette and two ap-
pendixes provide both C and Fortran programs as the basic implementation
part for most of the Problems. It is suggested that the student read through
the given programs and modify or rewrite them for the project at hand. Not
only will this save time, but it is a valuable lesson in learning how to read
someone else’s code (real-world scientists seldom have the luxury of writing
their own). Note, the C and Fortran pbrograms are not direct translations of

each other, and for some problems a program in only one language is pro- .

vided. We provide an appendix that tabulates analogous elements in the C
and Fortran languages. This should help those readers having to struggle with
a foreign language.

Most- of the problems we examine can also be worked in a problem solving
environment such as Maple, Mathematica, Matleb, or Mathcad. If you use
those packaged systems, you may not learn the same programming skills,
your program may be less flexible, and they may be much slower; but then
again, you may end up being able to spend more time understanding the
science and mathematics.

RS R B S Lk e

USING THIS BOOK WITH THE DISK AND WEB 7

Referring to as rapidly changing a resource as the Web in a textbook is
somewhat risky, yet it also adds a new dimension that is just too good to pass
up. References in this book to the Web are primarily to the resources main-
tained by the Northwest Alliance for Computational Science and Engineering
and the Undergraduate Computational Science and Engineering Project:

Computational Science Web Sites

NACSE http://www.nacse.org
UCES http:/fwww.krellinst.org/UCES/

As a research project aimed at better incorporating the techniques of high-
performance computing into science, these two groups have supported the
conversion of some of the computational physics projects in this book into
interactive Web tutorials. On the Web you will find running codes, figures, an-
imations, sonifications, corrected code listings, and control-pane] interfaces.
While these are not meant to be a substitute for studying the text or for your
running you own codes, they provide some stimulating examples of what can
de done and of how the physics can be “seen” in differing ways. For example,
not only can you see coordinate- and phase-space plots of a chaotic pendulum,
but you can actually see the pendulum swing and hear the oscillations!

Additional Web resources of interest are given by a Computational Physics
Resource Letter [DeV 95] and by the list of URLSs (universal resource locators)
on Landau’s home page. Particularly recommended are the Web sites of the
U.S. National Science Foundation Supercomputer Centers [NSF].

- Computing Software
Basics

In this chapter we explore basics of computing languages, number represen-
tation, and programming. Related topics dealing with hardware basics are
found in Chapter 18, Computing Hardware Basics: Memory and CPU. We
recommend that you glance through Chapter 18 now. If you find that you
really have no idea what it’s about, then you would benefit by studying it as
soon as possible, and especially before getting involved in heavy-duty com-
puting.

2.1 PROBLEM 1: MAKING COMPUTERS OBEY

You write your own program, wanting to have the computer work something
out for you. Your problem is that you are beginning to get annoyed because
the computer repeatedly refuses to give you the correct answers.

2.2 THEORY: COMPUTER LANGUAGES

As anthropomorphic as your view of your computer may be, it is good to keep
in mind that computers always do exactly as told. This means that you must
tell them exactly and everything they have to do. Of course, the programs
you write may be so complicated and have so many logical paths that you
may not have the endurance to figure it out in detail, but it is always possible
in principle. So the real problem addressed in thic chanter ic hanr tr mion

10 COMPUTING SOFTWARE BASICS

you enough understanding so that you feel well enough in control, no matter
how illusionary, to figure out what the computer is doing.

Before you tell the computer to obey your orders, you need to understand
that life is not simple for computers. The instructions they understand are
in a basic machine language® that tells the hardware to do things like move
a number stored in one memory location to another location, or to do some
simple, binary arithmetic. Hardly any computational scientist really talks
to a computer in a language it can understand. When writing and running
programs, we usually talk to the computer through shells or in high-level
languages. Eventually these commands or programs all get translated to the
basic machine language.

A shell (command-line interpreter) is a set of medium level commands or
small programs, run by a computer. As illustrated in Fig. 2.1, it is helpful to
think of these shells as the outer layers of the computer’s opgrating system.
While every general-purpose computer has some type of shell, usually each
computer has its own set of commands that constitute its shell. Tt is the job
of the shell to run various programs, compilers, linkage editors, and utilities,
as well as the programs of the users. There can be different types of shells
on a single computer, or multiple copies of the same shell running at the
same time for different users. The nucleus of the operating system is called,
appropriately, the kernel. The user seldom interacts directly with the kernel.
 The operating system is a group of instructions used by the computer to
:ommunicate with users and devices, to store and read data, and to execute
wrograms. The operating system itself is a group of programis that tells the
:omputer what to.do in an elementary way. It views you, other devices, and
rograms as input data for it to process; in many ways, it is the indispens-
ible office manager. While all this may seem unnecessarily complicated, its
yurpose is to make life easier for you by letting the computer do much of
he nitty-gritty work to enable you to think higher-level thoughts and com-
nunicate with the computer in something closer to your normal, everyday
anguage. Operating systems have names such as Uniz, VMS, MVS, DOS,
ad COS.

We will assume you are using a compiled high-level language like Fortran
t C, in contrast to an interpreted one like BASIC or Maple. In a compiled
anguage the computer translates an entire subprogram into basic machine
astructions all at one time. In an interpretive language the translation is
one one statement at a time. Compiled languages usually lead to more
ficient programs, permit the use of vast libraries of subprograms, and tend
3 be portable.

When you submit a program to your computer in a high-level language, the
smputer uses a compiler to process it. The compiler is another program that

The “BASIC” (Beginner’s All-purpose Symbolic Instruction Code) programming language
ould not be confused with basic machine language.

IMPLEMENTATION: PROGRAMMING CONCEPTS 11

Program
Development

utilities

kernel

hardware
IBM DEC,

Fig. 2.1 A schematic view of a computer’s kernel and shells.

treats your program as a foreign language and uses a built-in dictionary wcm
set of rules to translate it into basic machine language. As you can imagine,
the final set of instructions are quite detailed and long, and the compiler may
make several passes through your program to decipher your convoluted logic
and to translate it into a fast code. The translated statements form an object
code, and when linked together with other needed subprograms, form a .NE&
module. A load module is a complete set of machine language instructions
that can be loaded into the computer’s memory and read, understood, and
followed by the computer.

2.3 IMPLEMENTATION: PROGRAMMING CONCEPTS

Before we discuss general programming techniques, we need to be sure ﬂ.rmﬁ
you can talk to your computer. Here is a tutorial to get you communicating.
Begin by assuming that calculators have not been invented and you nmm@ a
program to calculate the area of a circle. Rather than using any specific
language, we will discuss how to write that program in pseudocode that can
be converted to your favorite language later. The first program tells the
computer:?2

calculate area of circle Do this, computer!

2Comments placed in the field to the right are for you and not for the computer to view.

12 COMPUTING SOFTWARE BASICS

This program cannot really work because it does not tell the computer which
circle to consider and what to do with the area. A better program would be

read radius

Input
calculate area of circle Numerics
print area Output

The instruction calculate area of circle has no meaning in most computer
languages, so we need to specify an algorithm® for the computer to follow:

read radius Input
calculate area of circle
m = 3.141593

area = wx radius?

Comment

Set constant
The algorithm
Dutput

This is a better program. When we cannot think of any more embellishments,
we convert this pseudocode to a language the computer can understand.

print area

2.4 IMPLEMENTATION: FORTRAN, AREA.F

A Fortran version of our area code is found on the disk and in Appendix D un-
ler the name area.f (we usually indicate the appropriate program name in the
iitle of Implementation sections, as you may note here). Because beginnings
ire so hard, we will be nice to you this time and list? the program here:

Program area Tell compiler it’s a main program
: Space helps readability
Say what’s happening
Uppercase for clarity

¢ area of ,,nw,wnuo. input r
Double Precision pi, r, A
¢ calculate pi *

Comment
pi = 3.141593 . Bet value of 7

¢ Read r from standard input (terminal)
i Write(*,*) ’specify radius’ E N Appears on terminal

Read (x, *) r
¢ calculate area

Input from terminal

A = pi * r*x2

a

Write area onto terminal screen

Write (*,10) ’radius r =7, r, > A=, 4 # for terminal
10 Format (a20,-£10.5, al§, £12.7)

Stop ’area’ Stop program and write ’area’

End

An algorithm is a set of rules for doing mathematics.

3eware, our typeset spaces may not be perfect. In Fortran, comments usually have a ¢ or
in column 1, statement numbers must be in columns 2-5, continuation characters must
+in column 6, and executable statements begin in column 7 (or higher).

IMPLEMENTATION: C, AREA.C 13

Notice that the variable and program names are meaningful and similar to stan-
dard nomenclature (even with an uppercase A), there are plenty of comments,
and the input and output are self-explanatory.

25 IMPLEMENTATION: C, AREA.C

A C version of our area program is found on the disk and in >Euo:&.x C Eﬁo_.
the name area.c (we usually indicate the appropriate program name S.n..m title
of Implementation sections, as you may note here). Because beginnings are
so hard, we will be nice to you this time and list the program here:

/* Calculate area of a circle */ A comment, for reader only
A blank line

#include <stdio.h> Need standard I/0 routines

#define pi 3.14159265369 Define constant
main(} Tell compiler it’s a main program
{ . Begin program
double r, A; Double-precision variables
printf{"Enter the radius of a circle \n"); Request input
scanf ("$1f", &r); Read from standard input
A=r *r * pi; Calculate area
printf(*radius r= %f, area A = %f\n", r, A); Print results
} End program

2.6 IMPLEMENTATION: SHELLS, mU_._..Omm,. AND PROGRAMS

1. To gain some experience with your computer system, enter one of the
preceding programs into a file. Then

(a) Compile and execute it (in one command).

(b) Check that the results are correct. Good input datum for testing is
r = 1, because then A = 7.

(¢) Try r = 2 and see if the area increases by a factor wm 4. A..:oz
experiment (e.g., see what happens if you leave off decimal points,
if you feed in blanks, if you feed in a letter, .. .).

2. The programs given here take input from and place output on the terminal
screen. Revise one of these programs so that the input and output come
from and are placed into two separate files.

3. Revise this program so that it uses a main program ?E.or does the input
and output) and a subroutine (which does the calculation). Check that
it still runs properly.

14 COMPUTING SOFTWARE BASICS

2.7 THEORY: PROGRAM DESIGN

Now that you have warmed up on the computer, let’s get back to the theory
that should be behind your actions. Even with a perfect set of physical laws, a
perfect algorithm, and a perfect computer, there still remains the challenge of
programming. Programming is viewed as a written art that blends elements of
science, mathematics, and computer science into a set of instructions so that
the computer can accomplish a scientific goal (for example; generating the
cross section for the scattering of an electron from a krypton atom). Sooner
or later, a scientist who wants to do something new or different has to write
his or her own programs. Computational scientists who place a high value

on collaboration with other people, as well as making contributions to the
development of science, write programs that

e Are simple and easy to read, making the action of each_part clear and
easy to analyze. (Just because it was hard for you to write that program,
doesn’t mean that you should make it hard for others to read.)

¢ Document themselves so that the programmer and others understand
what the programs are doing.

o Are easy to use.
e Are easy and safe to modify for different computers or systems.

e Can be passed on to others to use and further develop.

o Give the correct answers.

The lack of program readability leads to credibility problems and the stifling
of creativity. It is in the interests of the science to write clear programs even

or the complicated problems encountered in modern science and engineering.

eep in mind, the program is the ultimate documentation of a computational
cience ‘project, and the human and economic savings in being able to reuse
omeone else’s work is often tremendous.

True creative artists follow their own rules. Nonetheless, here are some
uggested ideas for modular and top-down programming that may help you
n the road to becoming a creative programmer:

1. A modular approach breaks up the tasks of a program into subprograms.
In general, your programs will be clearer and simpler, and easier to
write, if you make them modular. While you may be able to view small

‘programs in a single glance, the complexity of hundreds or thousands of

uninterrupted lines of code boggles the mind and makes a single-glance
understanding impossible.

This may not be good for vectorization on a supercomputer, but you can always recombine
le subprograms after they are debugged and running.

THEORY: PROGRAM DESIGN 15

(a) Write many small subprograms, each of which accomplishes limited
tasks. “

(b) Give each subunit well-defined input and output that gets passed
as arguments.

(¢) Make each subprogram reasonably independent of ﬂrm. others. <oc
can then test them independently and use them again and again
in other programs.

(d) Do not become overzealous about writing mcvao:aumw“ If a sub-
routine is very small and is often called, the overhead SEm. for ﬁ.&
calls may be relatively expensive. In that case, the compiler will
optimize better if you combine often-called and related program
units into one.

2. Put off as long as possible the actual writing of your program. Concen-
trate instead on clarifying, understanding, and defining the problem to
be solved and the logic to be used.

3. Try to choose the most reliable and simple algorithm. Speed matters,
but not if you get the wrong answers.

4. Be aware that an algorithm that is best for scalar architecture may not
be best for parallel architecture.

5. A program that is clear and simple will usually end up being less vcm@\.
While the clear program may take more time to write mc.a run, this
usually saves you time in the long run. More mavoawig it may rm@
a project reach a successful completion rather than being abandoned in
frustration.

6. The planning of your program should be from top down to bottom. ‘H.Ew
means you first outline the major tasks of the algorithm, always keeping
the big picture visible.

(a) Arrange the major tasks in the order 5. which they need to be
accomplished. This is the most basic outline.

(b) Plan the details of each major task, making sure to break these
tasks into subtasks (which may turn out to be mcvvnomgam.g
groups of subprograms). This will be the next level of complexity
in your outline.

(¢) Continue breaking up your tasks into smaller ones until you are at
the subroutine level.

7. Keep the flow through the program linear, as indicated in Fig.2.2, ,.inw
a minimal amount of jumping around.® Avoid go to’s and especially
computed go to’s.

8This principle is modified for a parallel computer where multiple, central processors work
simultaneously on one problem.

