An Introduction to Statistical Mechanics and the Ising Model

- A branch of physics that deals with systems with a large number of interacting elements.

 Classic examples:
 - Gases
 - Fluids
 - Magnets...

 ⇒ Newton's Eqs.
 ⇒ Hamilton Eqs.

- A direct application of Mechanics to each of its individual parts is impossible due to the extreme size of the system - \(N \approx 10^{23} \)!

- However, if one looks at the macroscopic properties of these systems, such as P & T, they are well-behaved quantities.

 ⇒ microscopic properties must "average" out to give predictable macroscopic behavior for the whole system.
- This "averaging" property of large systems give us the ability to describe the system statistically — "statistical Mechanics".

Levels of complications

"Microcanonical Ensembles": isolated systems with no exchange of energy or particles with its environment (E is conserved here)

The energy E of the system is fixed by the Hamiltonian function $H(x)$

where x is a high dimensional vector that specifies the configuration of the system.

* For large systems, there might be a large number of degenerate states for a given value of E.

SECTION 6.2

For the sake of simplicity, suppose that the volume V of the system is its only relevant external parameter. An isolated system of this kind consists then of a given number N of particles in a specified volume V, the constant energy of the system being known to lie in some range between E and $E + \delta E$. Probability statements are then made with reference to an ensemble which consists of many such systems, all consisting of this number N of particles in this volume V, and all with their energy lying in the range between E and $E + \delta E$. The fundamental statistical postulate asserts that in an equilibrium situation the system is equally likely to be found in any one of its accessible states. Thus, if the energy of a system in state r is denoted by E_r, the probability P_r of finding the system in state r is given by

$$ P_r = \begin{cases} C & \text{if } E < E_r < E + \delta E \\ 0 & \text{otherwise} \end{cases} $$

(6.1.1)

where C is a constant. It can be determined by the normalization condition that $\Sigma P_r = 1$ when summed over all accessible states in the range between E and $E + \delta E$.

An ensemble representing an isolated system in equilibrium consists then of states distributed in accordance with (6.1.1). It is sometimes called a "microcanonical" ensemble.

6.2 System in contact with a heat reservoir

We consider the case of a small system A in thermal interaction with a heat reservoir A'. This is the situation already discussed in Sec. 3.6 where $A \ll A'$, i.e., where A has many fewer degrees of freedom than A'. The system A may be any relatively small macroscopic system. (For example, it may be a bottle of wine immersed in a swimming pool, the pool acting as a heat reservoir.) Sometimes it may also be a distinguishable microscopic system which can be clearly identified.* (For example, it may be an atom at some lattice site in a solid, the solid acting as a heat reservoir.) We ask the following question: Under conditions of equilibrium, what is the probability P_r of finding the system A in any one particular microstate r of energy E_r?

This question is immediately answered by the same reasoning as was used in Sec. 3.3. We again assume weak interaction between A and A' so that their energies are additive. The energy of A is, of course, not fixed. It is only the total energy of the combined system $A^{(0)} = A + A'$ which has a constant value in some range between $E^{(0)}$ and $E^{(0)} + \delta E$. The conservation of energy can then be written as

$$ E_r + E' = E^{(0)} $$

(6.2.1)

where E' denotes the energy of the reservoir A'. When A has an energy E_r,

* The qualifying remark is introduced because it may not always be possible to label

the reservoir A' must then have an energy near $E' = E^{(0)} - E_r$. Hence, if E' is in the one definite state r, the number of states accessible to the combined system $A^{(0)}$ is just the number of states $\Omega'(E^{(0)} - E_r)$ accessible to A' when its energy lies in a range δE near the value $E' = E^{(0)} - E_r$. But, according to the fundamental statistical postulate, the probability of occurrence in the ensemble of a situation where A is in state r is simply proportional to the number of states accessible to $A^{(0)}$ under these conditions. Hence

$$ P_r = C' \Omega'(E^{(0)} - E_r) $$

(6.2.2)

where C' is a constant of proportionality independent of r. As usual, it can be determined from the normalization condition for probabilities, i.e.,

$$ \sum_r P_r = 1 $$

(6.2.3)

where the sum extends over all possible states of A irrespective of energy.

Up to now, our discussion has been completely general. Let us now make use of the fact that A is a very much smaller system than A'. Then $E_r \ll E^{(0)}$ and (6.2.2) can be approximated by expanding the slowly varying logarithm of $\Omega'(E')$ about the value $E' = E^{(0)}$. Thus

$$ \ln \Omega'(E^{(0)} - E_r) = \ln \Omega'(E^{(0)}) - \frac{\partial \ln \Omega'}{\partial E'} E_r + \cdots $$

(6.2.4)

Since A' acts as a heat reservoir, $E_r \ll E^{(0)}$ and higher order terms in the expansion can be neglected. The derivative

$$ \frac{\partial \ln \Omega'}{\partial E'} = \beta $$

(6.2.5)

is evaluated at the fixed energy $E' = E^{(0)}$ and is thus a constant independent of the energy E_r of A. By (3.3.10) it is just the constant temperature parameter $\beta = (kT)^{-1}$ characterizing the heat reservoir A'. (Physically, this means that the reservoir A' is so large compared to A that its temperature remains unaffected by whatever small amount of energy it gives to A.) Hence (6.2.4) becomes

$$ \ln \Omega'(E^{(0)} - E_r) = \ln \Omega'(E^{(0)}) - \beta E_r $$

or

$$ \Omega'(E^{(0)} - E_r) = \Omega'(E^{(0)}) e^{-\beta E_r} $$

(6.2.6)

Since $\Omega'(E^{(0)})$ is just a constant independent of r, (6.2.2) becomes then simply

$$ P_r = C e^{-\beta E_r} $$

(6.2.7)

where C is some constant of proportionality independent of r. Using the normalization condition (6.2.3), C is determined by the relation

$$ C^{-1} = \int P_r $$
"Canoical ensembles": systems are in thermal contact with a heat reservoir.

- heat reservoir is assumed to be big, so that $T_{	ext{reservoir}}$ can be considered fixed.

But, energy E can be exchanged between the reservoir and the system.

- At a given temperature T, the system typically has access to a large # of allowed states!

Statistical Description of States

1) Let define

$$R(x \to x') \; dt$$

to be the probability that the system starting in state x and ending up in state x' after dt.

$R(x \to x')$ is called the transition rate.
\(R(x \rightarrow x') \) is usually assumed to be time independent.

2. Now, we can also define a set of weights \(W_x(t) \) that gives the probability in finding the system at state \(x \) at time \(t \).

3. Then, the time evolution of the system can be described by the "master equation":

\[
\frac{dW_x}{dt} = \sum_{x'} [W_x(t) R(x' \rightarrow x) - W_{x'}(t) R(x \rightarrow x')]
\]

- This is just a statement on the conservation of probability.

Since \(W_x(t) \) is a probability, it must also satisfy:

\[
\sum_x W_x(t) = 1, \text{ for all time.}
\]
These two equations formally define $W_x(t)$!

With $W_x(t)$ known, then all macroscopic properties can be estimated.

For example, $E(x)$ is the energy for a given state, then

$$
\langle E \rangle = \sum_x E(x) W_x(t)
$$

gives the expectation of the energy for the system.

Equilibrium

Consider the situation when the rates of going into and out of x exactly cancel,

then $\frac{dW_x(t)}{dt} = 0$ or $W_x(t)$ is constant in time.

- We would call the system to be in equilibrium.
Since the master equation is of 1st order and $W_x(t) \in [0, 1]$ (probability), all systems governed by this equation must approach equilibrium at large t.

For systems in equilibrium, $R(x \rightarrow x')$ must take on specific values!

For systems in equilibrium, we know how the equilibrium occupation probability

$$p(x) = \lim_{t \rightarrow \infty} W_x(t)$$

should behave. (Gibb 1902, Boltzmann)

In Boltzmann's constant

$$p(x) = \frac{1}{Z} e^{-\beta E(x)/kT}$$

where

$$Z = \sum_x e^{-\beta E(x)/kT} = \sum_x e^{-\beta E(x)}$$

- Z is also the normalization factor.

- $p(x)$ is called the Boltzmann's distribution.
So, in terms of \(p(x) \), macroscopic averages are,

\[
\langle Q \rangle = \sum_x p(x) Q(x) = \frac{1}{Z} \sum_x Q(x) e^{-\beta E(x)}
\]

In particular, the expectation value of the energy \(\langle E \rangle \) (the internal energy of the system) is

\[
U = \frac{1}{2} \sum_x E(x) e^{-\beta E(x)}
\]

Note: This can also be written in terms of \(Z \),

\[
U = -\frac{1}{Z} \frac{\partial Z}{\partial \beta} = -\frac{\partial \ln Z}{\partial \beta}
\]

Check:

\[
\frac{\partial Z}{\partial \beta} = \frac{2}{e^\beta} \left(\sum_x e^{-\beta E(x)} \right) = Z \left(-\langle E(x) e^{-\beta E(x)} \rangle \right)
\]

\[
-\frac{1}{Z} \frac{\partial Z}{\partial \beta} = \frac{1}{Z} \sum_x E(x) e^{-\beta E(x)}
\]
And, specific heat is,

\[dT = -\frac{1}{k \beta} \, d\beta \]

\[u = -\frac{\partial \log z}{\partial \beta} \]

\[C = \frac{\partial U}{\partial T} = -k \beta^2 \frac{\partial U}{\partial \beta} = k \beta^2 \frac{\partial^2 \log z}{\partial \beta^2} \]

Recall \(\beta = \frac{1}{kT} \)

Then, from thermodynamic relations, we have

\[C = T \frac{\partial S}{\partial T} = -\beta \frac{\partial S}{\partial \beta} \]

So,

\[S = \int -\frac{C}{\beta} \, d\beta \]

\[= -\int k \beta \frac{\partial^2 \log z}{\partial \beta^2} \, d\beta \]

\[u = k \beta \]

\[du = \frac{\partial^2 \log z}{\partial \beta^2} \, d\beta \]

\[dv = \frac{\partial \log z}{\partial \beta} \]

\[d\mu = k \, d\beta \]

\[v = \frac{\partial \log z}{\partial \beta} \]

\[= -k \beta \frac{\partial \log z}{\partial \beta} + \int \frac{\partial \log z}{\partial \beta} \, k \, d\beta \]

\[S = -k \beta \frac{\partial \log z}{\partial \beta} + k \log z \]
Then, the free energy is given by

\[F = U - TS = - \frac{\partial \log Z}{\partial \beta} - \frac{1}{k_B} \left(-k_B \frac{\partial \log Z}{\partial \beta} + k_B \beta Z \right) \]

\[= -kT \log Z \]

Then, with \(\Gamma \), we can calculate all the "conjugate" forces to the system:

\[P = -\frac{\partial F}{\partial V} \]

\[M = \frac{\partial F}{\partial \beta} \]

\((P, V) \quad (M, \beta) \)

\(Z \) (the partition function) is an important quantity in statistical physics.

In numerical simulations, it is important to be able to calculate \(Z \) accurately!

- All macroscopic thermodynamic quantities can be derived by taking the appropriate derivatives of \(Z \) with respect to \(P, V, \beta \), etc.
Calculating \(C \) more directly:

Consider the variance of \(E \):

\[
\langle (E - \langle E \rangle)^2 \rangle = \langle E^2 \rangle - 2\langle E \rangle \cdot \langle E \rangle + \langle E \rangle^2
\]

\[
= \langle E^2 \rangle - 2\langle E \rangle^2 + \langle E \rangle^2
\]

\[
= \langle E^2 \rangle - \langle E \rangle^2
\]

Now, \(\langle E \rangle = \frac{1}{2} \int \frac{E}{2} \ e^{-\beta E(x)} \ dx \)

\[
= \frac{1}{2} \int \frac{2}{\beta^2} \ dx
\]

\[
= \frac{1}{2} \left(\frac{2}{\beta^2} \right)^2
\]

Note:

\[
\frac{\partial}{\partial \beta} \left(\frac{\partial^2 \rho}{\partial \beta^2} \right) = \frac{2}{\beta^2} \left(\frac{1}{2} \frac{\partial}{\partial \beta} \right)
\]

\[
= \frac{1}{2} \frac{\partial^2 \rho}{\partial \beta^2} - \frac{1}{2} \frac{\partial}{\partial \beta} \frac{\partial}{\partial \beta}
\]

\[
\frac{C}{k\beta^2} = \langle E^2 \rangle - \langle E \rangle^2
\]
The Ising Model

- A simple model for a magnet.

Model

\[
\begin{array}{cccc}
S_i & S_j & S_k & S_l \\
\end{array}
\]

- Macroscopic magnetism is resulted from a collection of magnetic dipoles or atomic spins \(S_0 \).

- The spins are assumed to be in a fixed lattice (3D physical, 2D simplified system chain).

Note: 1D & 2D can be solved analytically (Onsager, 1944). 3D is still unresolved analytically.
This system is characterized by the Hamiltonian

\[H = -2 \vec{z} \cdot \vec{s} - \frac{1}{2} \gamma S^z \]

The system is in a pseudo-magnetic state as the spin phase transition is paramagnetic.

A model provides a picture of how
- interactions are of the nearest neighbor type.
- Continuous spin models such as
 - Heisenberg 2D
 - Other types exist such as
 - can be up (+1) or down (-1)

\[\text{Eq.}(12) \]
Then, the partition function is given by

$$Z = \sum_{\{\mathbf{S}_i\}} e^{-\beta H}$$

up

summing all possible combinations of \(\{\mathbf{S}_i\}\)

with a given energy \(E(=H)\).

- \(\langle M \rangle = \langle \sum_{i} \mathbf{S}_i \rangle \) over ensemble

mean magnetization

- \(\langle m \rangle = \frac{\langle M \rangle}{N}\)

mean magnetization per spin
Counting Bonds on Ising Grid

\[H = - \sum_{\langle ij \rangle} S_i S_j \]
sum over all bonds

with periodic boundary

For \(N \times N \) grid, \(H = -2N^2 \) for all up or down arrangement.

\(- N = 3 : \)

- 3x3 vertical bonds
- 2x3 horizontal bonds
- 2x3x3 total bonds

\[H = -18 \]

- With one spin flip at middle

\[E_x' = E_x + 2J \sum_{i,j} \sum_{x} S_i^x S_j^x \]

\[= -18 + 8 = -10 \]

6 actual count = 10
0
4

\[E_x' = -10 \]