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Chapter 39: Particles Behaving 
as Waves

 Matter Waves

 Atomic Line-Spectra 
and Energy Levels

 Bohr’s Model of H-
atom

 The Laser

 Continuous Spectra & 
Blackbody Radiation



Matter Waves
As we have seen, light has a duality of being a 
wave and a particle. 

By a symmetry argument, de Broglie in 1924 
proposed that all form of matter should also 
posses this duality.

Recall for photons, we have:

For a massive particle with momentum  p = mv (or 
mv) and total energy E, de Broglie proposed:
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Electric Discharge Tube with Diluted Gas

Diluted gas containing trace elements 
such as H, He, Na, Hg, …

Observation: Energetic electrons from cathode excite gaseous atoms in the 
tube, light can be emitted.

Ddischarge tube

Gas is diluted so that the emission process is by individual atoms.  The 
spectrum of light emitted are sets of unique lines characteristic of the specific 
type of atoms in the gas.



Emission Line Spectra

To understand the reason why the 
spectrum is a set of discreet lines vs a 
continuous spectrum,

Will require our understanding of:

- Light behaving like particles

- Electron behaving like waves



The Hydrogen Spectrum

In 1885, Johann Balmer first analyzed its H spectrum and derived an 
empirical relation to accurately describe the wavelengths in the spectrum.
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is called the Rydberg constant which was 
experimentally found to match with observed data. 
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Photon Emission by Atoms
In order to explain the observed discrete spectra lines from atomic emissions, 
Niels Bohr in 1913 combined the following two central ideas in his model:

electrons as waves         & light as packets of energy

Energy Levels in a typical atom
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Each atom has a specific set of possible 
internal energy states. An atom can 
possess any one of these levels but 
cannot take on any intermediate values. 

a photon

(photons) (energy levels in atoms) 

E

E1

E2

E3



The Hydrogen Spectrum 

Multiplying Balmer’s empirical equation by hc, we have 
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Identifying the RHS as the difference between the energy associated to two 
energy levels, i.e., i and f, we can write
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The Hydrogen Spectrum



Photon Absorption by Atoms
In general, a photon, emitted when an excited atom makes a transition from a 
higher level to a lower level, can also be absorbed by a similar atom that is 
initially in the lower level.

After the atom has been excited by absorbing the photon, it typically relax back to 
the lower energy levels within a short lifetime characteristic of the excited level.  
An excited level is called metastable if it has a relatively long lifetime.



The Bohr Model
It is a mixture of classical and new (quantum) ideas in trying to theoretically 
calculate the energy levels of a hydrogen or hydrogen-like atom.

Assumptions of the model:

1. e- moves in stable circular orbits 
around the nucleus under the 
influence of Coulomb Force.

2. Atom only radiates when e- jumps 
from a higher energy orbit to a 
lower one, i.e.,                   . 

3. Only certain circular orbits are 
allowed: angular momentum of e-

around nucleus are quantized, i.e.,   
must be multiples of               .
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Electron Waves and the Bohr’s Model

In the Bohr’s model, angular momentum of the electron 
in a particular Bohr’s orbit is quantized.  

Using the de Broglie wave hypothesis, one can imagine 
an electron as a standing wave in a given energy state n.
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n is called the principal quantum number for the orbit.

Quantized means that waves must match along orbit.



Bohr’s Model (mathematical details)

n = 1 gives the smallest orbit for the Bohr atom and it is called the 
Bohr’s radius,
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With this fundamental length scale for an atom, the other radii can be written as,
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Energy levels are also quantized as a consequence of the electron behaving 
as a wave in the atom (angular momentum quantization),



Bohr’s Model

• The ground state energy of the H-atom is given by 
E1 = -13.6 eV when n = 1

• The energy required to remove an electron 
completely is given by the transition from 

and it is called the ionization energy
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Hydrogen-like Atoms

Singly ionized helium (He+), doubly 
ionized lithium (Li2+) are examples 
of hydrogen-like atoms with a single
electron around the nucleus.

For hydrogen-like atoms, e2 in all 
equations from previous analysis 
is replaced by Ze2, where Z is the 
atomic number of the element.
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Blackbody Radiation
The total intensity (per unit surface 
area) of emitted light by a 
blackbody at absolute temperature 
T is given by the Stefan-
Boltzmann Law:
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where  is call the Stefan-
Boltzmann constant and it has the 
following value:
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Blackbody Radiation: Cavity Radiation

Electric Forge

An example of a “blackbody” is a 
cavity with a small opening !

D_cavity



Blackbody Radiation: Spectral Emittance

The intensity is not uniformly distributed over all wavelengths.  The intensity 
distribution for a given range of wavelength is called the spectral emittance I().

(Experimental observed spectral emittance for 
different T’s.)

Note: as expected,
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Planck’s Blackbody Radiation Law



Heisenberg’s Uncertainty Principle

In nature, space-time coordinates are linked to its dynamical counterparts as 
conjugate variable pairs in physics.                    
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By decreasing the uncertainty in one of the variables (x or t), its 
corresponding conjugate variable                 must increase accordingly ! orxp E

But, there are no restrictions for unconjugated variables: , .yx p or x y etc   

And, most importantly, the Heisenberg’s Uncertainty Principle enforces an 
inverse proportional relation on the two conjugate pairs of dynamics variables:
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