PHYS 262

George Mason University

Prof. Paul So

Chapter 39: Particles Behaving as Waves

- □ Matter Waves
- Atomic Line-Spectra and Energy Levels
- Bohr's Model of Hatom
- □ The Laser
- Continuous Spectra & Blackbody Radiation

Matter Waves

As we have seen, light has a *duality* of being a wave and a particle.

By a *symmetry* argument, de Broglie in 1924 proposed that *all form of matter* should also posses this duality.

Recall for photons, we have: $\lambda = \frac{h}{n}$

For a massive particle with momentum p = mv (or γmv) and total energy *E*, de Broglie proposed:

$$\lambda = \frac{h}{p} = \frac{h}{mv} \quad \left(=\frac{h}{\gamma mv}\right)$$

$$f = \frac{E}{h}$$

(de Broglie wavelength)

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Electric Discharge Tube with Diluted Gas

Observation: Energetic electrons from cathode excite gaseous atoms in the tube, light can be emitted.

Gas is *diluted* so that the emission process is by *individual* atoms. The spectrum of light emitted are sets of unique lines characteristic of the specific type of atoms in the gas.

Emission Line Spectra

To understand the reason why the spectrum is a set of discreet lines vs a continuous spectrum,

Will require our understanding of:

- Light behaving like particles
- Electron behaving like waves

The Hydrogen Spectrum

In 1885, Johann Balmer first analyzed its H spectrum and derived an *empirical* relation to accurately describe the wavelengths in the spectrum.

$$\frac{1}{\lambda} = R\left(\frac{1}{2^2} - \frac{1}{n^2}\right) \quad n = 3, 4, 5, \cdots$$

 $R = 1.097 \times 10^7 m^{-1}$ is called the **Rydberg constant** which was experimentally found to match with observed data.

Photon Emission by Atoms

In order to explain the observed *discrete* spectra lines from atomic emissions, Niels Bohr in 1913 combined the following two central ideas in his model:

&

electrons as waves (energy levels in atoms) light as packets of energy (photons)

Energy Levels in a typical atom

i An atom drops from an initial level i to a lower-energy final level f by emitting a photon with energy equal to $E_i - E_f$. f $f = \frac{hc}{2} = E_i - E_f$

Each atom has a *specific set* of possible internal energy states. An atom can possess any one of these levels but cannot take on any *intermediate* values.

The Hydrogen Spectrum

Multiplying Balmer's empirical equation by hc, we have

$$\Delta E = hc \frac{1}{\lambda} = hcR\left(\frac{1}{2^2} - \frac{1}{n^2}\right), \quad n = 3, 4, \cdots$$

Identifying the RHS as the difference between the energy associated to two energy levels, i.e., *i* and *f*, we can write

$$E_{i} = -\frac{hcR}{n^{2}} \qquad E_{f} = -\frac{hcR}{2^{2}}$$

$$\Delta E = hf = \frac{hc}{\lambda} = E_{i} - E_{f}$$

$$i \qquad \text{An atom drops from an initial level i to a lower-energy final level f by emitting a photon with energy equal to $E_{i} - E_{f}$

$$E_{f} \qquad E_{f} = -\frac{hcR}{2^{2}}$$$$

The Hydrogen Spectrum

Paschen Pfund $-0.28 \, eV$ n = 7Lyman -0.38 eV n=6series series series -0.54 eV n =-0.85 eV n=4-1.51 eV n=3Brackett series n = 2 $-3.40 \, eV$ Balmer series -13.6 eV n =Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Energy-level diagram for hydrogen, showing some

transitions corresponding to the various series

"Permitted" orbits of an electron in the Bohr model of a hydrogen atom (not to scale). Arrows indicate the transitions responsible for some of the lines of various series.

Photon Absorption by Atoms

In general, a photon, *emitted* when an *excited* atom makes a transition from a higher level to a lower level, can also be *absorbed* by a similar atom that is initially in the lower level.

After the atom has been excited by absorbing the photon, it typically relax back to the lower energy levels within a short **lifetime** characteristic of the excited level. An excited level is called **metastable** if it has a relatively long lifetime.

The Bohr Model

It is a mixture of classical and new (quantum) ideas in trying to theoretically calculate the energy levels of a hydrogen or hydrogen-like atom.

© 2012 Pearson Education In

Assumptions of the model:

- *e*⁻ moves in **stable** circular orbits around the nucleus under the influence of Coulomb Force.
- 2. Atom *only* radiates when e^- jumps from a higher energy orbit to a lower one, i.e., $hf = E_i - E_f$.
- 3. Only certain circular orbits are allowed: angular momentum of e^{-} around nucleus are **quantized**, i.e., $|\vec{L}|$ must be multiples of $\hbar = h/2\pi$.

Angular momentum \vec{L}_n of orbiting electron is perpendicular to plane of orbit (since we take origin to be at nucleus) and has magnitude $L = mv_n r_n \sin \phi = mv_n r_n \sin 90^\circ = mv_n r_n.$ *n*th allowed V electron orbit Nucleus \boldsymbol{r}_n $\vec{\boldsymbol{p}} = m\vec{\boldsymbol{v}}$ Electron $= 90^{\circ}$

Electron Waves and the Bohr's Model

In the Bohr's model, angular momentum of the electron in a particular Bohr's orbit is **quantized**.

$$L_n = mv_n r_n = n \frac{h}{2\pi} = n\hbar, \quad n = 1, 2, 3, \cdots$$

n is called the **principal quantum number** for the orbit.

Quantized means that waves must match along orbit.

Using the de Broglie wave hypothesis, one can imagine an electron as a **standing wave** in a given energy state *n*.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Bohr's Model (mathematical details)

n = 1 gives the smallest orbit for the Bohr atom and it is called the **Bohr's radius**,

$$a_0 = r_1 = \frac{\varepsilon_0 h^2}{\pi m e^2} = 5.29 \times 10^{-11} m$$

With this fundamental length scale for an atom, the other radii can be written as,

$$r_n = a_0 n^2$$
, $n = 1, 2, 3, \cdots$

Energy levels are also *quantized* as a consequence of the electron behaving as a wave in the atom (angular momentum quantization),

$$E_n = -\frac{me^4}{8\varepsilon_0^2 h^2} \frac{1}{n^2} = \frac{-13.6eV}{n^2}$$

Bohr's Model

- The ground state energy of the H-atom is given by
- The energy required to remove an electron completely is given by the transition from

$$n=1$$
 to $n=\infty$

and it is called the **ionization energy**

$$E_{ionization} = E_{\infty} - E_1 = 13.6 eV$$

Hydrogen-like Atoms

Singly ionized helium (He+), doubly ionized lithium (Li2+) are examples of hydrogen-like atoms with a *single* electron around the nucleus.

For hydrogen-like atoms, e^2 in all equations from previous analysis is replaced by Ze^2 , where Z is the *atomic number* of the element.

$$r_n \rightarrow r_n / Z$$

 $E_n \rightarrow Z^2 E_n$

Blackbody Radiation

The total intensity (per unit surface area) of emitted light by a blackbody at absolute temperature *T* is given by the **Stefan-Boltzmann Law**:

$$I = \sigma T^4$$

where σ is call the **Stefan-Boltzmann constant** and it has the following value:

The Sun

$$\sigma = 5.67 \times 10^{-8} \frac{W}{m^2 \cdot K^4}$$

Blackbody Radiation: Cavity Radiation

An example of a "blackbody" is a cavity with a small opening !

Light that enters box is eventually absorbed. Hence box approximates a perfect blackbody.

Electric Forge

Blackbody Radiation: Spectral Emittance

The intensity is not uniformly distributed over all wavelengths. The intensity distribution for a given range of wavelength is called the *spectral emittance* $I(\lambda)$.

(Experimental observed spectral emittance for different *T*'s.)

Note: as expected,
$$I = \int_0^\infty I(\lambda) d\lambda$$

Planck's Blackbody Radiation Law

$$I(\lambda,T) = \frac{2\pi hc^2}{\lambda^5 \left(e^{hc/\lambda kT} - 1\right)}$$

Heisenberg's Uncertainty Principle

In nature, space-time coordinates are linked to its dynamical counterparts as **conjugate** variable pairs in physics.

$$(p_x, x)$$
 (p_y, y) (p_z, z) and (E, t)

And, most importantly, the Heisenberg's Uncertainty Principle enforces an *inverse* proportional relation on the two *conjugate* pairs of dynamics variables:

$$\Delta x \Delta p_x \ge \frac{\hbar}{2}, \quad \Delta y \Delta p_y \ge \frac{\hbar}{2}, \quad \Delta z \Delta p_z \ge \frac{\hbar}{2}, \quad \Delta E \Delta t \ge \frac{\hbar}{2}$$

By decreasing the uncertainty in one of the variables (x or t), its corresponding **conjugate** variable(p_x or E) must increase accordingly ! But, there are **no** restrictions for *unconjugated* variables: $\Delta x \Delta p_y$ or $\Delta x \Delta y$, etc.