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Chapter 37: Relativity 
 Events and Inertial 

Reference Frames

 Principles of Einstein’s 
Special Relativity

 Relativity of Simultaneity, 
Time Intervals, Length

 Lorentz Transformation

 Relativistic Momentum & 
Energy

 Relativistic Doppler Shift



Lorentz Coordinate Transformation

( , , , ) ( ', ', ', ')x y z t x y z t

u in x-dir only.

Transforming the space-time coordinates from S to S’ correctly so that 
physical laws satisfying SR are invariant.



Lorentz Transformation
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Lorentz Velocity Transform
From the principle of relativity, there should be no physical distinction for 
the two inertial observers in relative motion.

So the Lorentz Velocity Transform equation and its inverse transform 
should have the same form but with u -u for the inverse transform of v
in term of v’.
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Relativistic Momentum & Energy
As we have seen, time intervals, length intervals, and velocity change 
according to the Lorentz Transformation depending on the observer’s 
frame of reference. 

( , ) ( ', ') Lorentz Transformationx t x t

Other dynamical quantities (such as momentum, energy, etc.) must also be 
appropriately expressed so that the laws of physics satisfy the following 
conditions:

• Satisfy the two postulates of Special Relativity:

• Laws of physics (e.g., conservation of momentum, conservation 
of energy, Newton’s laws) apply equally to all inertial observers.

• Speed of light in vacuum same for all inertial observers

• The modified relativistic dynamical quantities should reduce to the 
classical ones for u << c.



Relativistic Momentum & Energy
Relativistic Momentum:
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Relativistic Energy:
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Total Relativistic Energy

Note:

The mass “m” which we have been using is a constant in our analysis.  
It is called the rest mass (“proper” mass) and is the mass of an object 
measured by an observer stationary with the object.

The quantity mrel = m is called the “relativistic mass” and is not a 
constant for a moving object and is measured by an observer not at rest 
with the object.
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So, there is a residual Total Relativistic Energy                      even for a particle 
at rest.  The quantity mc2 is called the Rest Energy.

Total Relativistic Energy

For a particle at rest in a reference frame, it will have                   and  

2 0E mc 

Rest Energy (mc2)   • Independent of velocity
• Proportional to the mass of the particle
• Mass is a form of energy

2 2E mc mc 

1 0v m s



Total Relativistic Energy
For a particle in motion, we can definite the relativistic Kinetic Energy as the 
difference between the Total Relativistic Energy and the Rest Energy, 
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Relativistic KE  Classical KE

Slow moving particle regime              ,v c

Using binomial theorem,
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Substituting this into the equation for Relativistic KE,
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This is the classical 
result for v << c.
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laws of physics should be unchanged !



Total Relativistic Energy

Since E =  mc2 is the total relativistic energy of the system, 

E is conserved in all processes ! 

- It combines with the two classical independent conservation laws:

 conservation of energy
 conservation of mass

- The  statement on the Conservation of Total Relativistic Energy is 
more general



Conservation Laws

Conservation of Relativisity Energy

 Conservation of Relativistiy Momentum
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The following set of equations form the generalized conservation 
laws in Special Relativity.

AND, these conservation laws apply to all processes equally in 
all inertial reference frames !



New Energy Units

Electron Volt (eV):

The energy equals to moving one positive test charge e+ 
(1 Coulomb)  across an electric potential of 1 volt.

1 199(1.6022 10 )1 1.602( 21 10)C VeV J    

Example: Rest Mass Energy of an electron
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319.109 10em kg 

20.511em MeV c (mass of e in units of eV and c)



Energy-Momentum Relation

2

2 2 2 4

E mc

E m c








2 2 2 2 2 2

p mv

c p m v c








2 2 2 2 4E c p m c 

Subtract and Simiplify



Energy-Momentum Relation
2 2 2 2 4E c p m c 

This means that the combination                       is independent of motion and 
is an invariant quantity,

 Both E and P will change depending on the relative S-S’ velocity but                    
will not.

2 2 2E c p

Note:
For particles at rest, p = 0, this expression gives              which is the rest mass 
energy as previously.

2E mc

For photons with no mass, E=pc, which can also be shown from Maxwell’s 
Equations.

2 2 2E c p



Relativistic Doppler Effect

Statement of the problem: A source of light is moving at constant speed u
toward a stationary observer (Stanley).  The source emits EM waves with f0 = 
1/T0 in its rest frame.  What is the frequency measured by Stanley?



Relativistic Doppler Effect
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Doppler Shift for a receding source

higher freq blue shifted

lower freq red shifted


