Physics 262/266

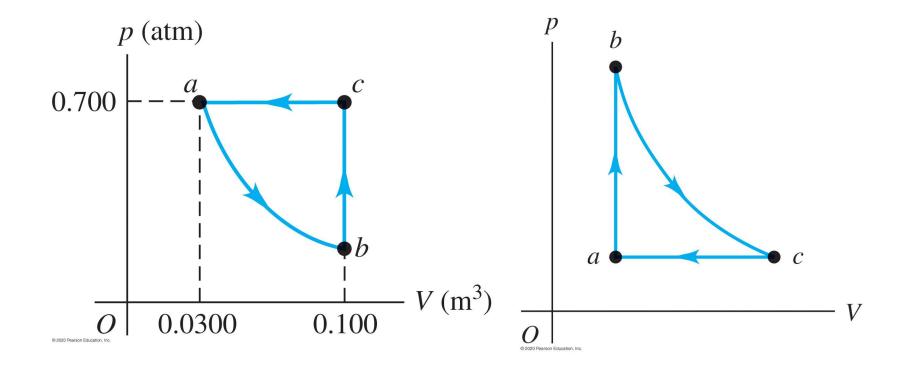
George Mason University

Prof. Paul So

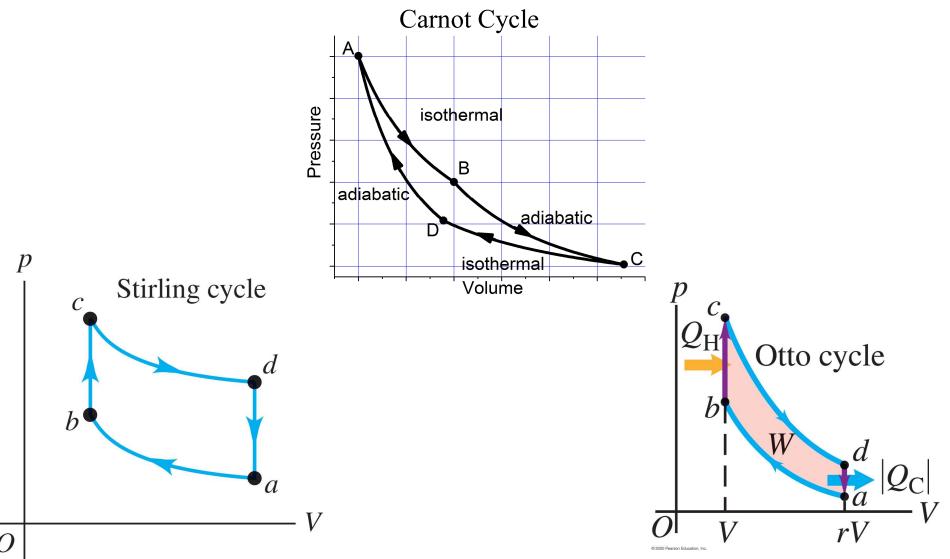
Chapter 20: The 2nd Law of Thermodynamics

- Preferential Direction in Thermodynamic Processes
- □ Heat Engine and Efficiency
- The 2nd Law of Thermodynamics
- The Carnot Cycle (the most efficient heat engine)
- □ Entropy
- Entropy and Disorder

Heat Engines

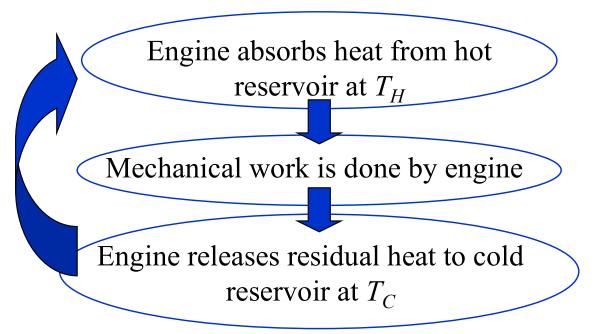


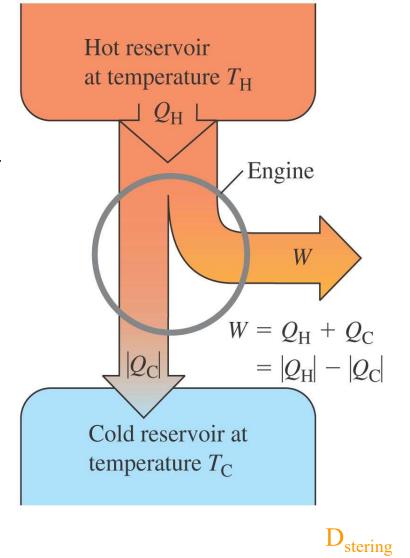
Heat Engines



Heat Engines

- Definition: A device that converts a given amount of *heat* into *mechanical energy*.
- □ All heat engines carry some *working substance* thru a *cyclic process*:





Efficiency for a Heat Engine

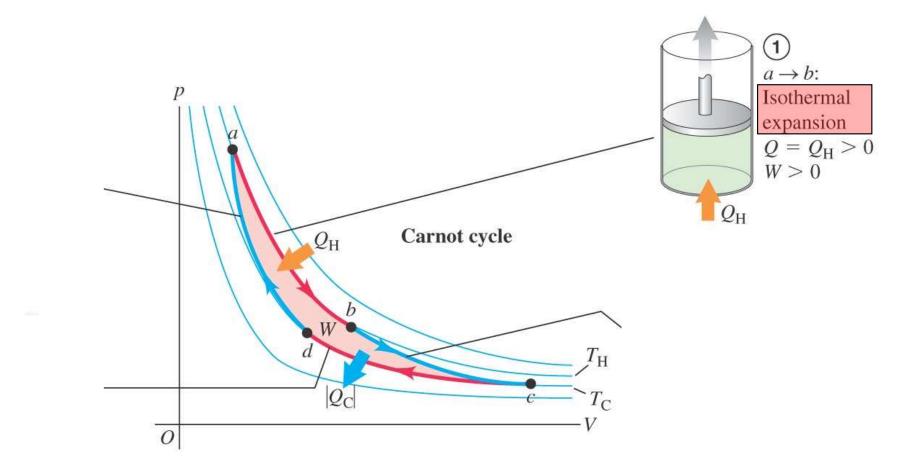
□ Thermal Efficiency *e* is defined as the *ratio* of the mechanical energy output to the heat energy input,

$$e = \frac{W}{Q_H} = \frac{\text{what you get our}}{\text{what you put in}}$$

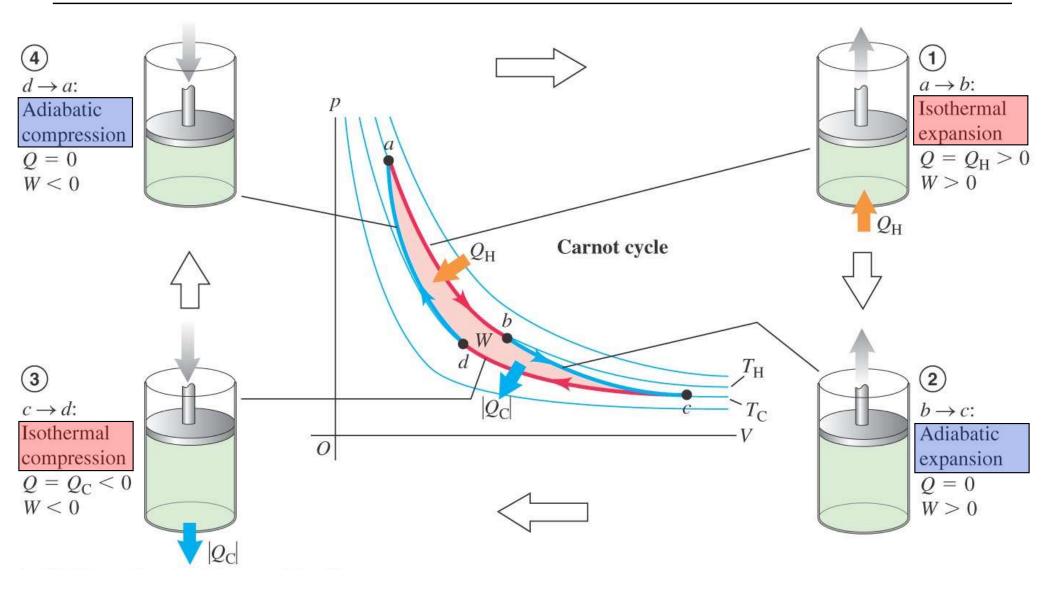
$$\vdots$$

$$e = 1 - \left| \frac{Q_C}{Q_H} \right|$$

Carnot Cycle: Ideal Heat Engine



Steps of the Carnot Cycle



Efficiency of the Carnot Cycle

By explicitly calculating
$$Q_C$$
 and Q_H in $e = 1 - \frac{|Q_C|}{|Q_H|}$...

$$e \equiv 1 - \frac{|Q_C|}{|Q_H|} = 1 - \frac{T_C}{T_H}$$
 (*T* must be in K)
(Carnot Cycle only)

Efficiency of the Carnot Cycle

$$e_{carnot} = 1 - \frac{T_C}{T_H}$$
 (Carnot Cycle)

General Comments:

- > Higher efficiency if either T_C is lower and/or T_H is higher.
- For any *realistic* thermal process, the cold reservoir is far above absolute zero, i.e., $T_C > 0$.
- Thus, a realistic e is strictly less than 1! (No 100% efficient heat engine)
- Realistic heat engines must take in energy from the high T reservoir for the work that it produces AND some heat energy must be *released* back to the lower T reservoir. (Kelvin-Planck's Statement)

Entropy

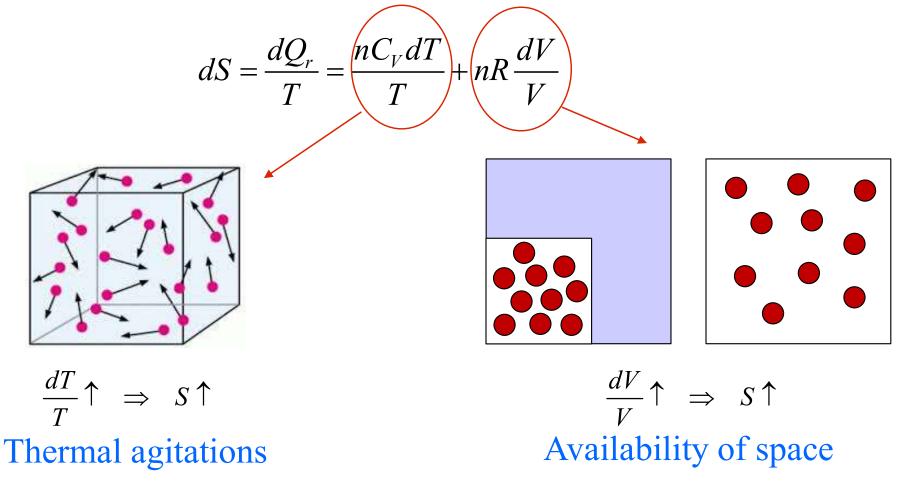
$$dS = \frac{dQ}{T}$$
 and $\oint_{cycle} dS = \frac{dQ_r}{T} = 0$ $[S] = J/K$

This state variable *S* is called the **entropy** of the system.

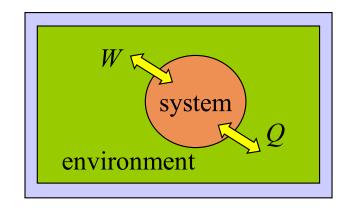
Entropy is macroscopic variable describing the degree of disorder of the system.

Entropy: Disorder (General Reversible Process)

In our discussion of ΔS for an ideal gas through a general reversible process, we just derived the following relation,



2nd Law (Quantitative Form)



$$\Delta S_{tot} = \Delta S_{sys} + \Delta S_{env} \ge 0$$

($\Delta S_{tot} = 0$ reversible; $\Delta S_{tot} > 0$ irreversible)

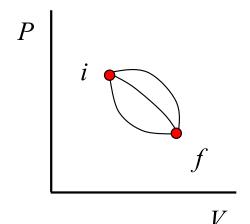
"The *total* entropy (disorder) of an *isolated* system in any processes can never decrease."

"Nature always tends toward a state with the highest *S* (disorder) [most probable] in any processes."

1. General *Reversible* Processes:

$$\Delta S = \int_{i}^{f} dS = \int_{i}^{f} \frac{dQ_{r}}{T}$$

Note: *S* is a *state variable*, ΔS is the *same* for *all* processes (including irreversible ones) with the same initial and final states!



NOTE: in most applications, it is the change in entropy ΔS which one typically needs to calculate and not *S* itself.

2. Reversible Cycles:

$$\Delta S_{cycle} = \oint_{cycle} ds = \oint_{cycle} \frac{dQ_r}{T} = 0$$

3. Any Reversible Processes for an Idea Gas:

$$\Delta S = nC_V \ln\left(\frac{T_f}{T_i}\right) + nR \ln\left(\frac{V_f}{V_i}\right)$$

4. Calorimetric Changes:

$$dQ = mcdT$$
$$\Delta S = \int_{i}^{f} \frac{dQ}{T} = \int_{i}^{f} \frac{mcdT}{T}$$

If *c* is constant within temperature range, $\Delta S = mc \ln \left(\frac{T_f}{T_i}\right)$

If
$$c(T)$$
 is a function of T , $\Delta S = m \int_{i}^{f} \frac{c(T)dT}{T}$

5. During Phase Changes (or other isothermal Processes):

$$\Delta S = \int \frac{dQ}{T} = \frac{1}{T} \int dQ$$

(*T* stays constant during a phase change.)

$$\Delta S = \frac{Q}{T} = \frac{mL}{T}$$