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Chapter 18: Thermal Properties of
Matter

Topics for Chapter

* Equations of State

e Ideal Gas Equation

e PV Diagrams

 Kinetic-Molecular Model of
an Ideal Gas

e Heat Capacities

e Distribution of Molecular
Speeds
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Equations of State

0 State Variables

—> physical variables describing the
macroscopic state of the system:

P, V, T, n(or m)
0 Equation of State

—> a mathematical relationship linking these
variables
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Ideal Gas Law

0 An Ideal Gas (diluted):
= No molecular interactions besides elastic collisions

» Molecular volume <<< volume of container

Most everyday gases ~ Ideal!

¢ 5. .. PV=nRT OR PV = NkKT

RO R=8.314J /mol-K Thas to be in K|

“ e '-.. k=R=1.381><10_23 J /molecule-K

/' r— % N,
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Typical Usage for the Ideal Gas Law

0 For a fixed amount of gas (nR=const)

> PV:nR:const
T

0 So, 1f we have a gas at two different states 1(before) and 2
(after), their state variables are related simply by:

RV, _BY,
L T

We can use this relation to solve for any unknown variables
with the others being given.



Molecular Interpretation of Temperature

From Kinetic Theory for an Ideal Gas,

We linked the average KE of the molecules 1n the
temperature 7' of the gas:

(KE) = Lot = %kT (per molecule)

av rms

“Temperature 1s a direct measure of the average
translational KE of the molecules in an 1deal gas.”
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Heat Capacities of an Ideal Gas (at constant V)

¥ Using the Kinetic-Molecular model, one can
/ calculate heat capacity for an Ideal Gas!

ge

;9 0 For point-like molecules (monoatomic gases),
v_\/ molecular energy consists only of translational
kinetic energy KE

®) | 0 We just learned that KE 1s directly proportional
T+dT l to T‘

0 When an infinitesimal amount of heat dQ
NP enters the gas, dT increases, and d(KE)
“B. I increases accordingly,

d(KE)= 3deT (or= _anT)




Heat Capacities of an Ideal Gas (at constant V)

(@) ]

l}- Then, from energy conservation,
. dQ = d (KE)
: ﬂ So,  dQ=d(KE)=3NkdT (or=3nRdT)
-
| Then, the definition of Heat Capacity dQ = nC,dT ,
V 3
—> C, =—R
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Heat Capacity and Molecular Motion

Heat capacity of a gas is related to its ability to absorb and store
energy.

A diatomic molecule can absorb energy into its translational
motion, 1ts rotational motion and in its vibrational motions.

Translational motion. The molecule Rotational motion. The molecule rotat—~ _ . . _
moves as a whole; its velocity may be described about its center of mass. This molecule has . Vibrational mqtmn. The molecule OSC'”FHGS
as the x-, y-, and z-velocity components of independent axes of rotation. as though the nuclei were connected by a spring.
its center of mass. y

Independent b4
axes of rotation |

<€ > < >
—dmmmmw

We can treat each
atom’s mass as being
located at its nucleus. B

pubishing a5 P
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Equipartition of Energy

This principle states that each degree of freedom (“separate
mechanisms 1n storing energy’’) will contribute (2 £7) to the total
average energy per molecule.

01 Monoatomic: 3 translational dofs = 3 (% kT)
This give E,,= 3/2 NkT or =3/2 nRT

<E>permolecule - 3/2 kT — CV — %R

0 Diatomic (without vibration): 3 trans dofs + 2 rotational dofs
This give E, = 5/2 NkT or =5/2 nRT.

<E>permolecule - S/ZkT — CV — %R



Maxwell-Boltzmann Distribution

372
7(v)=4 7[( n j L2200 f(v)dv gives the probability of
27kT finding molecules with speed in

fv) LST,>T, range [v,v+dv].

0 Diff averages with respect to the
distribution of molecular speeds
can be calculated using f(v):

v 1. v, =va (v)dv  (avg of v)
0

As temperature increases:
* the curve flattens. , ® ,
» the maximum shifts to higher speeds. 2. ()a= _[V f(wydv (avg of v)
B — 0
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Statistical Description of Molecular Speed

0 Average speed (mean value): Yy =\ ohL
0 Root Mean Square (RMS) speed: vrmS:\/ (VzLV Z\/%WT

Note: v, does not equal v, !

In addition to simple “mean” and “median”, there are other
ways to statistically describe the “average” values for a
distribution of molecules moving at different speeds!

0 Most Probable Speed - the maximum value of the distribution

function f(v):
_ [2kT
Ymp =\"m



Heat Capacities (real gases, e.g., H,)

0 Atlow T . only 3 Heat capacity for a H, gas
translational dofs can c. Below SOK, H, Appreciable Appreciable
V' molecules undergo  rotational motion vibrational motion
< 4R | translation but do begins to occur  begins to occur
be aCtlvated not rotate or vibrate. above 50 K. above 600 K.
TRI2 - ~==| TRI2

0 Athigher 7, additional « v

rotational dofs can be  #2r 512
° 2R -
activated 1 -
0 At higher T still, R -
* * . R/2 +
vibrational dofs might I .
1 t t. t d 0 25 50 100 250 500 1000 2500 5000 10,000

- For normal 7 range, one take C, = éR for H, gas
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