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Chapter 18: Thermal Properties of 
Matter

• Equations of State
• Ideal Gas Equation
• PV Diagrams
• Kinetic-Molecular Model of 

an Ideal Gas
• Heat Capacities
• Distribution of Molecular 

Speeds

Topics for Chapter



Equations of State
 State Variables

 physical variables describing the 
macroscopic state of the system: 

P, V, T, n (or m)

 Equation of State

 a mathematical relationship linking these 
variables



Ideal Gas Law
 An Ideal Gas (diluted): 

 No molecular interactions besides elastic collisions
 Molecular volume <<< volume of container

Most everyday gases ~ Ideal!
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Typical Usage for the Ideal Gas Law
 For a fixed amount of gas (nR=const)
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 So, if we have a gas at two different states 1(before) and 2 
(after), their state variables are related simply by:

We can use this relation to solve for any unknown variables 
with the others being given.



Molecular Interpretation of Temperature

From Kinetic Theory for an Ideal Gas,

“Temperature is a direct measure of the average
translational KE of the molecules in an ideal gas.”

We linked the average KE of the molecules in the 
temperature T of the gas:
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Heat Capacities of an Ideal Gas (at constant V)

Using the Kinetic-Molecular model, one can 
calculate heat capacity for an Ideal Gas!

 For point-like molecules (monoatomic gases), 
molecular energy consists only of translational 
kinetic energy KE

  3 3( )
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 We just learned that KE is directly proportional 
to T.

 When an infinitesimal amount of heat dQ
enters the gas, dT increases, and d(KE)
increases accordingly,



Heat Capacities of an Ideal Gas (at constant V)

Then, from energy conservation,
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So,

Then, the definition of Heat Capacity                     ,
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Heat Capacity and Molecular Motion

A diatomic molecule can absorb energy into its translational 
motion, its rotational motion and in its vibrational motions.

Heat capacity of a gas is related to its ability to absorb and store 
energy.



Equipartition of Energy
This principle states that each degree of freedom (“separate 
mechanisms in storing energy”) will contribute (½ kT) to the total 
average energy per molecule. 

 Diatomic (without vibration): 3 trans dofs + 2 rotational dofs
This give Etot= 5/2 NkT or  = 5/2 nRT.

 Monoatomic: 3 translational dofs 3 (½ kT)
This give Etot= 3/2 NkT or  = 3/2 nRT
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 Diff averages with respect to the 
distribution of molecular speeds 
can be calculated using f(v):

1. (avg of v)

2. (avg of v2)

Maxwell-Boltzmann Distribution

 f(v)dv gives the probability of 
finding molecules with speed in 
range [v,v+dv].
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 Most Probable Speed - the maximum value of the distribution 
function f(v):

Statistical Description of Molecular Speed

 Average speed (mean value):

 Root Mean Square (RMS) speed:

Note: vav does not equal vrms !
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In addition to simple “mean” and “median”, there are other 
ways to statistically describe the “average” values for a 
distribution of molecules moving at different speeds!

Ddrinking



Heat Capacities (real gases, e.g., H2)

 At low T, only 3 
translational dofs can 
be activated

 At higher T, additional 
rotational dofs can be 
activated

 At higher T still, 
vibrational dofs might 
also get activated

Heat capacity for a H2 gas

 For normal T range, one take                 for H2 gas 
5
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