Physics 262/266

Recitation

Prof. Paul So

Chapter 17: Temperature & Heat

© 2012 Pearson Education, Inc.

Topics in Chapter

- thermometers and temperature scales
- absolute zero and the Kelvin scale
- meaning of thermal equilibrium
- thermal expansion
- meaning of heat
- calorimetry calculations
- mechanisms of heat transfer

Temperature (T)

Physics definition: average KE of molecules (more on this next chapter)

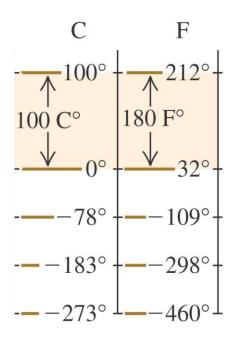
Common usage: a measure of "hot" & "cold"

Physical changes associated with ΔT :

- •Most materials expand when heated
- •Pressure of gas (in a closed container) $\hat{\parallel}$ with $\hat{\parallel}$ T
- •Electrical resistance changes with T
- •Materials radiate at different λ at different T
- •State of matter change with T

Ice \leftrightarrow water \leftrightarrow steam

Temperature Scales


Water boils

Water freezes

CO₂ solidifies

Oxygen liquefies

Absolute zero

F Celsius (°C) & <u>Fahrenhe</u> 100° $100^{$ Celsius (°C) & <u>Fahrenheit</u> (°F) are traditionally defined with reference states:

> Freezing point & Boiling point of water at 1 atm.

$$\begin{cases} T_C = \frac{5}{9} \left[T_F - 32^o \right] \\ T_F = \frac{9}{5} T_C + 32^o \end{cases}$$

Temperature Scales

Water boils373 100° 212° Celsius (°C) & Fahrenhe:Water freezes373 100° 100° 100° 100° Water freezes273 0° 32° Celsius (°C) & Fahrenhe:Water freezes273 0° 32° Celsius (°C) & Fahrenhe:Water freezes273 0° 32° Celsius (°C) & reference states: Oxygen liquefies $90 + -183^\circ + -298^\circ$ Absolute zero $0 + -273^\circ + -460^\circ$

(new)

Celsius (°C) & <u>Fahrenheit</u> (°F) are traditionally defined with reference states:

Freezing point & Boiling point of water at 1 atm.

$$\begin{cases} T_C = \frac{5}{9} \left[T_F - 32^o \right] \\ T_F = \frac{9}{5} T_C + 32^o \end{cases}$$

Heat

Caution: in everyday usage, Temp & Heat are usually interchangeable.

But, in physics, they are **not** the same!

Temperature: a macroscopic state variable ~ avg. KE of molecules in the system (later).

Heat: the *transfer of energy* between bodies due to a temperature difference.

Quantity of Heat

Energy transfer due to temp diff is called **heat**.

Historically, the unit of heat is defined in terms of temp changes of *water*:

1 calorie (cal) = amount of energy transfer (heat) needed to raise the temp of 1g of water from 14.5°C to 15.5°C.

From Joules experiment, we now know that this amount of heat is equivalent to 4.186 J amount of mechanical energy, i.e.,

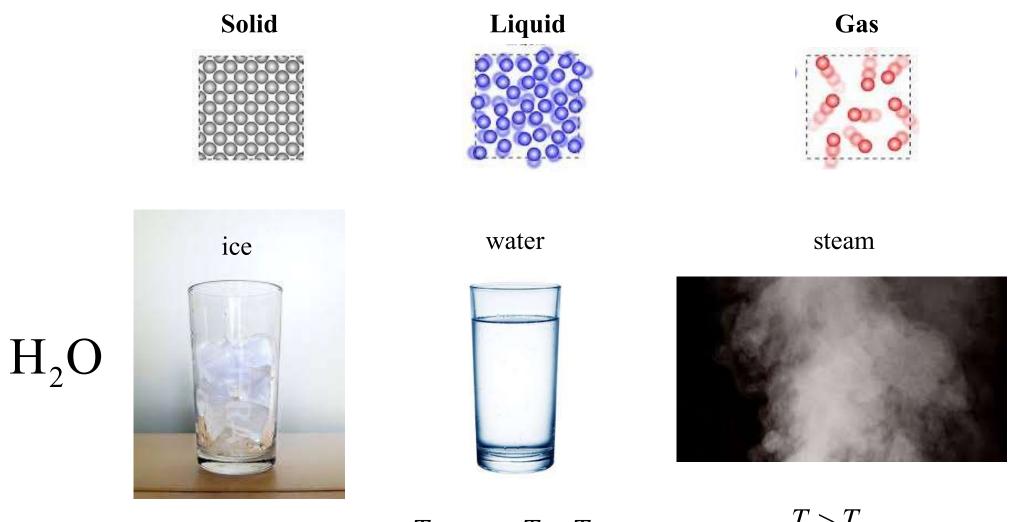
1 cal = 4.186 J

Specific Heat/Heat Capacity

Different type of materials will need different amount of heat to raise its temp by 1°C (or 1K).

We can quantify this using *specific heat c*:

$$Q = mc \Delta T$$
 or $dQ = mc dT$


- $Q \rightarrow$ quantity of heat needed to raise T from T_1 to T_2 $(\Delta T = T_2 - T_1)$
- $m \rightarrow$ mass of the material
- $c \rightarrow$ "specific heat" is characteristic of the type of material [$J/kg \cdot K$]

Specific Heat Values

Table 17.3 Approximate Specific Heats and Molar Heat Capacities (Constant Pressure)

Substance	Specific Heat, <i>c</i> (J/kg · K)	Molar Mass, <i>M</i> (kg/mol)	Molar Heat Capacity, <i>C</i> (J/mol • K)	
Aluminum	910	0.0270	24.6	
Beryllium	1970	0.00901	17.7	
Copper	390	0.0635	24.8	
Ethanol	2428	0.0461	111.9	
Ethylene glycol	2386	0.0620	148.0	
Ice (near 0°C)	2100	0.0180	37.8	
Iron	470	0.0559	26.3	
Lead	130	0.207	26.9	
Marble (CaCO ₃)	879	0.100	87.9	
Mercury	138	0.201	27.7	
Salt (NaCl)	879	0.0585	51.4	
Silver	234	0.108	25.3	
Water (liquid)	4190	0.0180	75.4	

Phases of Matters

 $T < T_{freezing}$

 $T_{freezing} < T < T_{boiling}$

 $T > T_{boiling}$

Heat Exchanges during Phase Changes

During **Phase Changes**, energy exchanged is used for *internal* structural changes (e.g., pulling molecules further apart) :

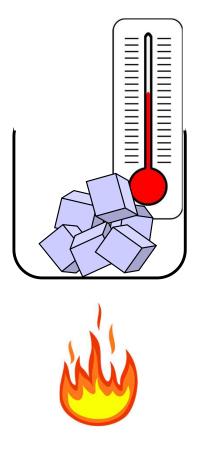
e.g. ice \rightarrow water or water \rightarrow steam

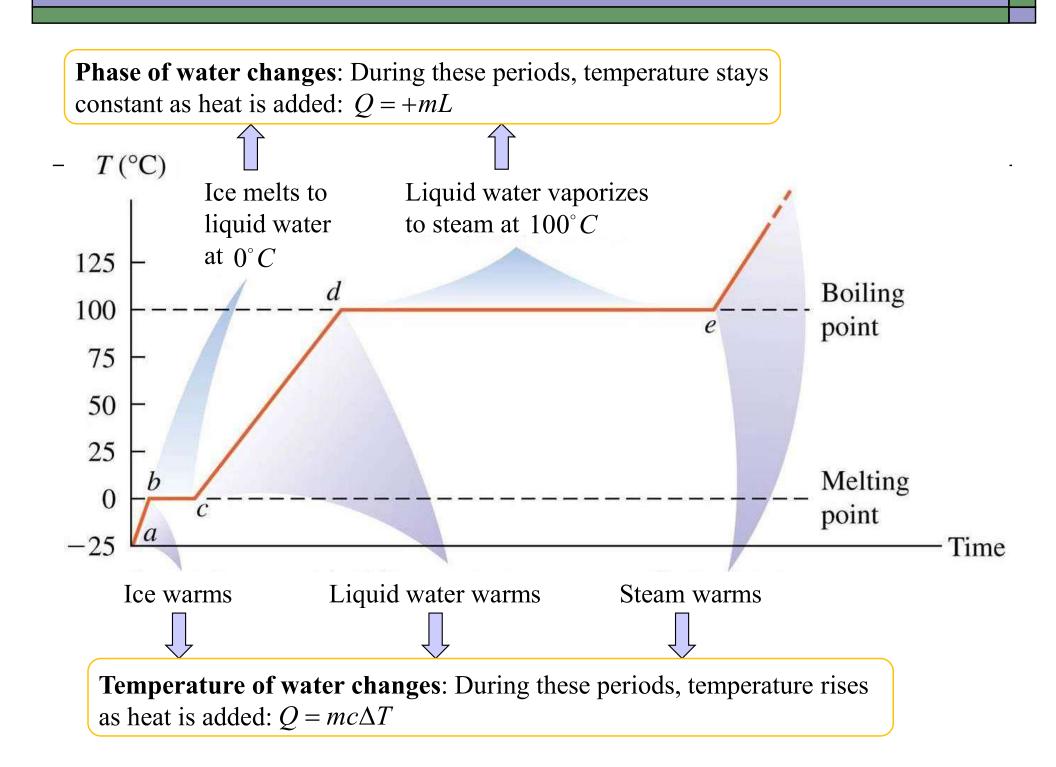
$$Q = m L$$

heat of fusion (water)heat of vaporization (water) $L_f = 3.34 \times 10^5 J/kg$ <</td> $L_v = 2.26 \times 10^6 J/kg$

Since all energy is used for internal structural change, heat exchanged by substances during **Phase Changes** does NOT produce ΔT .

Heats of Fusion & Heats of Vaporization


Substance	Normal Melting Point		Heat of Fusion, $L_{\rm f}$	Normal Boiling Point		Heat of Vaporization, L_v
	К	°C	(J/kg)	K	°C	(J/kg)
Helium	*	*	*	4.216	-268.93	20.9×10^3
Hydrogen	13.84	-259.31	58.6×10^{3}	20.26	-252.89	452×10^3
Nitrogen	63.18	-209.97	25.5×10^{3}	77.34	-195.8	201×10^3
Oxygen	54.36	-218.79	13.8×10^{3}	90.18	-183.0	213×10^3
Ethanol	159	-114	104.2×10^{3}	351	78	854×10^3
Mercury	234	-39	11.8×10^{3}	630	357	272×10^3
Water	273.15	0.00	334×10^3	373.15	100.00	2256×10^{3}
Sulfur	392	119	38.1×10^{3}	717.75	444.60	326×10^{3}
Lead	600.5	327.3	24.5×10^{3}	2023	1750	871×10^{3}
Antimony	903.65	630.50	165×10^{3}	1713	1440	561×10^3
Silver	1233.95	960.80	88.3×10^{3}	2466	2193	2336×10^{3}
Gold	1336.15	1063.00	64.5×10^{3}	2933	2660	1578×10^{3}
Copper	1356	1083	134×10^{3}	1460	1187	5069×10^{3}


 Table 17.4
 Heats of Fusion and Vaporization

*A pressure in excess of 25 atmospheres is required to make helium solidify. At 1 atmosphere pressure, helium remains a liquid down to absolute zero. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Calorimetric Processes

Now we are ready to describe thermodynamic process such as the following:

Calorimetry: Problem Solving with Heat Exchanges (method 1)

- Main Concept: Conservation of Energy
 - $\sum \Sigma Q = 0 \text{ (sum of all heat flows into and out of system =0)}$
- Sign Convention: heat enters a system is + heat leaves a system is -

$$\Box \quad \varDelta T = T_f - T_i$$

Calorimetry: Problem Solving with Heat Exchanges (method 2)

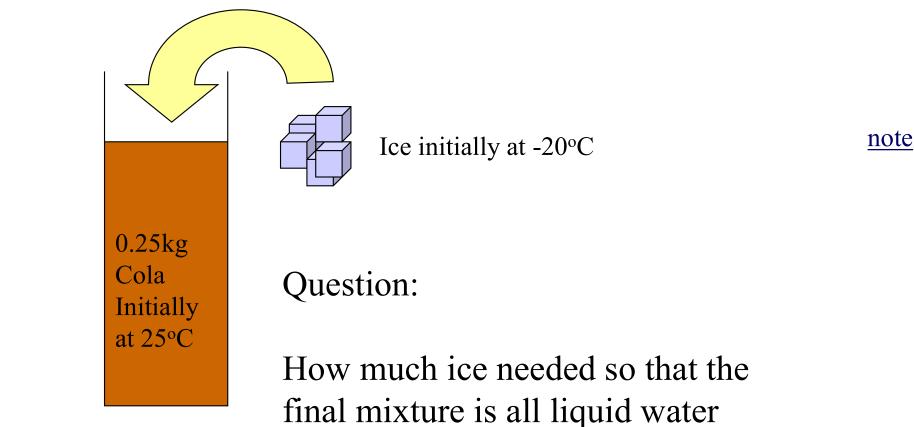
□ Main Concept: Conservation of Energy

OR
$$\sum Q_{gain} = \sum Q_{loss}$$

□ Keep all heats as positive quantities

Calorimetry: Problem Solving with Heat Exchanges

Steps:


- 1. Identify all phase change pts
- 2. Apply (either $Q=mc\Delta T$ or Q=mL) for each processes separately. (don't apply $Q=mc\Delta T$ across ph. changes!)

3. Use

$$\sum_{ALL} Q = 0 \quad \text{and follow sign convention}$$

or just do
$$\sum Q_{gain} = \sum Q_{loss}$$

Calorimetry (example 17.8)

with a temperature of 0°C?