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Photons: Electromagnetic radiation behaves as both
waves and particles. The energy in an electromagnetic
wave is carried in units called photons. The energy E of
one photon is proportional to the wave frequency f and
inversely proportional to the wavelength A, and is pro-
portional to a universal quantity # called Planck’s con-
stant. The momentum of a photon has magnitude E/c.
(See Example 38.1.)

(38.2)

(38.5)

The photoelectric effect: In the photoelectric effect, a
surface can eject an electron by absorbing a photon
whose energy hf is greater than or equal to the work
function ¢ of the material. The stopping potential Vjis
the voltage required to stop a current of ejected elec-
trons from reaching an anode. (See Examples 38.2
and 38.3.)

eVo=hf — ¢

(38.4)

Monochromatic light

Cathode Anode

U Ti—

7eT li

——is
Fos

Photon production, photon scattering, and pair produc-
tion: X rays can be produced when electrons acceler-
ated to high kinetic energy across a potential increase
Vac strike a target. The photon model explains why the
maximum frequency and minimum wavelength pro-
duced are given by Eq. (38.6). (See Example 38.4.) In
Compton scattering a photon transfers some of its
energy and momentum to an electron with which it col-
lides. For free electrons (mass m) the wavelengths of
incident and scattered photons are related to the photon
scattering angle ¢ by Eq. (38.7). (See Example 38.5.) In
pair production a photon of sufficient energy can disap-
pear and be replaced by an electron—positron pair. In
the inverse process, an electron and a positron can
annihilate and be replaced by a pair of photons. (See
Example 38.6.)

eVAC = hfmax =

(bremsstrahlung)
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(Compton scattering)
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The Heisenberg uncertainty principle: It is impossible to
determine both a photon’s position and its momentum at
the same time to arbitrarily high precision. The preci-
sion of such measurements for the x-components is lim-
ited by the Heisenberg uncertainty principle, Eq. (38.17);
there are corresponding relationships for the y- and
z-components. The uncertainty AFE in the energy of a state
that is occupied for a time At is given by Eq. (38.24). In
these expressions, i = h/27r. (See Example 38.7.)
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AxAp, = /2
(Heisenberg uncertainty
principle for position and
momentum)

AtAE = /2

(Heisenberg uncertainty

principle for energy and time)

violation.

(38.17]
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Allowed:
AxAp, = hf2

AxAp, = hf2

Impossible:
AxAp, < #if2
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De Broglie waves and electron diffraction: Electrons and A= h _ — Incident electron
other particles have wave properties. A particle’s wave- p mv ’ waves in phase  goaered electron
length depends on its momentum in the same way as for waves in phase
photons. A nonrelativistic electron accelerated from rest g = jf (39.2)
through a potential difference Vj,, has a wavelength AT
given by Eq. (39.3). Electron microscopes use the very h h crystal
small wavelengths of fast-moving electrons to make A=—=—— (38.3 AT
P \/2melﬁ,a

images with resolution thousands of times finer than is
possible with visible light. (See Examples 39.1-39.3.)

The nuclear atom: The Rutherford scattering experiments show that most of an atom’s mass and all
of its positive charge are concentrated in a tiny, dense nucleus at the center of the atom. (See

Example 39.4.)

il : A :Nucleus

Atomic line spectra and energy levels: The energies of hf = he —E _ (39,5 =X E
atoms are quantized: They can have only certain definite A ' L ‘ ] N~ '
values, called energy levels. When an atom makes a W\'
transition from an energy level E; to a lower level Ey, it & = 8= 1
emits a photon of energy E; — E;. The same photon can f O Ey
be absorbed by an atom in the lower energy level, which
excites the atom to the upper level. (See Example 39.5.)
The Bohr model: In the Bohr model of the hydrogen L = mor = ni 24
atom, the permitted values of angular momentum are " " 2@ ‘
integral multiples of &/27. The integer multiplier » is (n=1,23,...) (39.86] o4 E]ect_ro)n
called the principal quantum number for the level. The A - Ll Flone
orbital radii are proportional to n2 and the orbital speeds ry = e(,ﬂ — n2a0 (39.8) Sehs Q q
are proportional to 1/n. The energy levels of the hydro- Tme? — v,
gen atom are given by Eq. (39.15), where R is the _ n2(5.29 x 10~ m) (39.10] o
Rydberg constant. (See Example 39.6.) 7
1 &2 219 %x10%m/s
=i =— (399
€g 2nh n
heR 13.60 eV
n - 7_2 - 2 [39.15]
n n

(n=1,2,3,...)

The laser: The laser operates on the principle of stimulated emission, by which many photons with
identical wavelength and phase are emitted. Laser operation requires a nonequilibrium condition
called a population inversion, in which more atoms are in a higher-energy state than are in a lower-

energy state.
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Blackhaody radiation: The total radiated intensity (aver-
age power radiated per area) from a blackbody surface
is proportional to the fourth power of the absolute tem-
perature 7. The quantity o = 5.67 X 1078 \’\:’/11’12 -K*
is called the Stefan—Boltzmann constant. The wave-
length A, at which a blackbody radiates most strongly
is inversely proportional to T. The Planck radiation law
gives the spectral emittance 7(A) (intensity per wave-
length interval in blackbody radiation). (See Examples
39.7 and 39.8.)
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I=oT*

(Stefan—Boltzmann law) (39.19)

AT = 2.90 X 107 m-K

(Wien displacement law) (39.21)
2mhe?

I(A) = AS(ehc/Ak'l' _ l)

(Planck radiation law) (39.24)

violation.
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Bridging Problem 1319

The Heisenberg uncertainty principle for particles: The same uncertainty considerations that apply Apy Allowed:
to photons also apply to particles such as electrons. The uncertainty AE in the energy of a state that AxAp, =H[2
is occupied for a time At is given by Eq. (39.30). (See Examples 39.9 and 39.10.) Arhp, = B2
Impossible:
AxAp, = ﬁ/z ) ) o o AxAp, <42
AyAp, = 1/2 (Heisenberg uncertainty principle for position and momentum) (39.29) Ax
AzAp. = fif2
AtAE = h/2 (Heisenberg uncertainty principle for energy and time interval) (39.30)

Hot Stars.and:Hydrogen Clouds

Figure 39.36 shows a cloud, or nebula, of glowing hydrogen in
interstellar space. The atoms in this cloud are excited by short-
wavelength radiation emitted by the bright blue stars at the center
of the nebula. (a) The blue stars act as blackbodies and emit light
with a continuous spectrum. What is the wavelength at which a
star with a surface temperature of 15,100 K (about 2% times the
surface temperature of the sun) has the maximum spectral emit-
tance? In what region of the electromagnetic spectrum is this? (b)
Figure 39.32 shows that most of the energy radiated by a black-
body is at wavelengths between about one half and three times the
wavelength of maximum emittance. If a hydrogen atom near the
star in part (a) is initially in the ground level, what is the principal
quantum number of the highest energy level to which it could be
excited by a photon in this wavelength range? (c) The red color of
the nebula is primarily due to hydrogen atoms making a transition
from n = 3 ton = 2 and emitting photons of wavelength 656.3 nm.
In the Bohr model as interpreted by de Broglie, what are the
electron wavelengths in the n = 2 and n = 3 levels?

SOLUTION GUIDE

See MasteringPhysics® study area for a Video Tutor solution. ‘ M )

39.36 The Rosette Nebula.
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IDENTIFY and SET UP

L. To solve this problem you need to use your knowledge of both
blackbody radiation (Section 39.5) and the Bohr model of the
hydrogen atom (Section 39.3).

2. In part (a) the target variable is the wavelength at which the star
emits most strongly; in part (b) the target variable is a principal
quantum number, and in part (c) it is the de Broglie wavelength
of an electron in the n = 2 and n =3 Bohr orbits (see Fig.
39.24). Select the equations you will need to find the target
variables. (Hint; In Section 39.5 you learned how to find the
energy change involved in a transition between two given lev-
els of a hydrogen atom. Part (b) is a variation on this: You are to
find the final level in a transition that starts in the n = | level
and involves the absorption of a photon of a given wavelength
and hence a given energy.)

ENECUTE

3. Use the Wien displacement law to find the wavelength at which
the star has maximum spectral emittance. In what part of the
electromagnetic spectrum is this wavelength?

4. Use your result from step 3 to find the range of wavelengths in
which the star radiates most of its energy. Which end of this
range corresponds to a photon with the greatest energy?

5. Write an expression for the wavelength of a photon that must
be absorbed to cause an electron transition from the ground
level (n = 1) to a higher level n. Solve for the value of n that
corresponds to the highest-energy photon in the range you cal-
culated in step 4. (Hint: Remember than # must be an integer.)

6. Find the electron wavelengths that correspond to the n = 2 and
n = 3 orbits shown in Fig. 39.22.

EVALUATE

7. Check your result in step 5 by calculating the wavelength
needed to excite a hydrogen atom from the ground level into
the level above the highest-energy level that you found in
step 5. Is it possible for light in the range of wavelengths you
found in step 4 to excite hydrogen atoms from the ground level
into this level?

8. How do the electron wavelengths you found in step 6 compare
to the wavelength of a photon emitted in a transition from the
n = 3 level to the n = 2 level?
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Wave functions: The wave function for a particle con-
tains all of the information about that particle. If the par-
ticle moves in one dimension in the presence of a
potential energy function U(x), the wave function

W (x, r) obeys the one-dimensional Schrodinger equa-
tion. (Fora free particle on which no forces act,

U(x) = 0.) The guantity | W (x, r)|?, called the probabil-
ity distribution function, determines the relative proba-
bility of finding a particle near a given position at a
given time. If the particle is‘in a state of definite energy,
called a stationary state, W(Xx, r) is a product of a func-
tion ¢s(x) that depends only on spatial coordinates and a
function e /% that depends only on time. For a station-
ary state, the probability distribution function is inde-
pendent of time.

A spatial stationary-state wave function (x) fora
particle that moves in one dimension in the presence of a
potential-energy function U(x) satisfies the time-
independent Schridinger equation. More complex wave
functions can be constructed by superposing stationary-
state wave functions. These can represent particles that
are localized in a certain region, thus representing both
particle and wave aspects. (See Examples 40.1 and 40.2.)

72 W (x, 1)

o + U(x)W¥(x, 1)

AW (x. 1)
= jh———— (40.20)
at

(general 1-D Schridinger equation)

W(x,1) = g(x)e
(time-dependent wave function
for a state of definite energy)

40.21]

#2 d*p(x)
_—2;—([3[2 + U(x)(x) = Eg(x)
(time-independent Schrodinger

equation) (40.23)

Re W(x) = A cos kx
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Particle in a box: The energy levels for a particle of
mass m in a box (an infinitely deep square potential
well) with width L are given by Eq. (40.31). The corre-
sponding normalized stationary-state wave functions of
the particle are given by Eq. (40.35). (See Examples
40.3 and 40.4.)

(40.31]

(40.35)

=
I

Wave functions and normalization: To be a solution of
the Schridinger equation, the wave function i(x) and
its derivative dis(x)/dx must be continuous everywhere
except where the potential-energy function U(x) has an
infinite discontinuity. Wave functions are usually nor-
malized so that the total probability of finding the parti-
cle somewhere is unity.

(40.33)

/ o=

(normalization condition))

Finite potential well: In a potential well with finite depth Uj,, the energy levels are lower than those Ut
for an infinitely deep well with the same width, and the number of energy levels corresponding to Condousn, Uy = 6E,
bound states is finite. The levels are obtained by matching wave functions at the well walls to sat- n=3 E3 = 509, 1oy,
isfy the continuity of i(x) and diy(x)/dx. (See Examples 40.5 and 40.6.) = 08480
n=2 E, = 243E, o
| _ Eipy = 0.4050,
n=1 ~ Ep = 0.625E, 1y
= 0.1040,
0 L
Potential barriers and tunneling: There is a certain probability that a particle will penetrate a potential- Ulx)
energy barrier even though its initial energy is less than the barrier height. This process is called weo) Uy
tunneling. (See Example 40.7.)
: P N R X
V Vo| &

violation.
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1356 CHAPTER 40 Quantum Mechanics

Quantum harmonic oscillator: The energy levels for the
harmonic oscillator (for which U(x) = -;k'xz) are given
by Eq. (40.46). The spacing between any two adjacent
levels is fiw, where @ = V' k'/m is the oscillation angu-
lar frequency of the corresponding Newtonian harmonic
oscillator. (See Example 40.8.)

(40.46)
Ey = 3t
E = 30
1
AE = e Ey= 3 hw

BRIDGING PROBLEM A Packet in a'Box

A particle of mass m in an infinitely deep well has the following
wave function in the region fromx = Otox = L:

= _1 —iEt/h _1_ —iEst/h
\/Elvbl(x)e + \/Ed’Q(x)e

Here i (x) and #o(x) are the normalized stationary-state wave
functions for the first two levels (n = | and n = 2), given by
Eq. (40.35). E| and E,, given by Eq. (40.31), are the energies of
these levels. The wave function is zero for x < 0 and for x > L.
(a) Find the probability distribution function for this wave function.
(b) Does W(x,r) represent a stationary state of definite energy?
How can you tell? (¢) Show that the wave function W (x, ) is nor-
malized. (d) Find the angular frequency of oscillation of the proba-
bility distribution function. What is the interpretation of this
oscillation? (e) Suppose instead that W (x, ¢) is a combination of the
wave functions of the two lowest levels of a finite well of length L
and height Uy equal to six times the energy of the lowest-energy
bound state of an infinite well of length L. What would be the angu-
lar frequency of the probability distribution function in this case?

SOLUTION GUIDE

See Masteringphysics® study area for a Video Tutor solution. | MP

IDENTIFY and SET UP

1. In Section 40.1 we saw how to interpret a combination of two
free-particle wave functions of different energies. In this prob-
lem you need to apply these same ideas to a combination of
wave functions for the infinite well (Section 40.2) and the finite
well (Section 40.3).

¥ (x, 1)

Problems

EXECUTE

2. Write down the full time-dependent wave function W (x, 1) and
its complex conjugate W (x, ¢} using the functions i (x) and
yr>(x) from Eqg. (40.35). Use these to calculate the probability
distribution function, and decide whether or not this function
depends on time.

3. To check for normalization, you’ll need to verify that when you
integrate the probability distribution function from step 2 over
all values of x, the integral is equal to 1. [Hint: The trigonomet-
ric identities sin®@ ='3(1 — cos20) and sinfsingy = cos(f —
¢) — cos(f + ¢) may be helpful.]

4. To find the answer to-part (d) you’ll need to identify the oscilla-
tion angular frequency g in your expression from step 2 for
the probability distribution function. To interpret the oscillations,
draw graphs of the probability distribution functions at times
t=0,r=T/4,t=T/2 and r = 3T/4, where T = 27 /wqy, is
the oscillation period of the probability distribution function.

5. For the finite well you do not have simple expressions for the
first two stationary-state wave functions i (x) and try(x).
However, you can still find the oscillation angular frequency
wyse» Which is related to the energies E| and E in the same way
as for the infinite-well case. (Can you see why?)

EVALUATE

6. Why are the factors of 1/%?2 in the wave function W(x, 1)
important?

7. Why do you suppose the oscillation angular frequency for a
finite well is lower than for an infinite well of the same width?

For instructor-assigned homewaork, go to MasteringPhysics®. @)

*, ==, === Problems of increasing difficulty. CP: Cumulative problems incorporating material from earlier chapters. CALC: Problems

requiring calculus. BI0: Biosciences problems.

DISCUSSION QUESTIONS

040.1 If quantum mechanics replaces the language of Newtonian
mechanics, why don’t we have to use wave functions to describe
the motion of macroscopic bodies such as baseballs and cars?

040.2 A student remarks that the relationship of ray optics to the
more general wave picture is analogous to the relationship of New-

tonian mechanics, with well-defined particle trajectories, to quan-
tum mechanics. Comment on this remark.

040.3 As Eq. (40.21) indicates, the time-dependent wave function
for a stationary state is a complex number having a real part and an
imaginary part. How can this function have any physical meaning,
since part of it is imaginary?
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