
We now assume the same fundamental sinusoidal form for the wave function of 
a quantum free particle with mass m, momentum            and energy             :

Wave Equation for a Quantum Free 
Particle

Thus, a correct quantum wave function for a quantum free particle must 
satisfy this quantum dispersion relation for      and      :k

E  

 
2 2

*
2

k

m
 



     , cos sinx t A kx t B kx t     

p k 

(non-relativistic)

Recall from our discussion on the mechanical wave, we have the following:

t




x





take out an overall k
factor from   ,x t

take out an overall 
factor from   ,x t





2 2

2

k

m


 

We can argue that the PDE for the quantum wave function for this free particle 
must involves:

Wave Equation for a Quantum Free 
Particle

So, from the quantum dispersion relation,

Putting in other constants so that units are consistent and one additional 
dimensionless “fitting” constant C, we then have this trial wave equation,

t





2

2x




   22

2

, ,

2

x t x t

m x t
C

  
 

 
 



Wave Equation for a Quantum Free 
Particle

Now, we substitute our trial quantum wave function

into the proposed wave equation to solve for the “fitting” constant C:
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Wave Equation for a Quantum Free 
Particle

Equating the two terms and using the equality                   , we have,
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In order for this equality to be true for all         , all coeff’s for cos and sin 
must equal to each other,
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Substituting the first eq into the second, we have,
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With                     , the free particle quantum wave function can also be 
written in a compact exponential form using the Euler’s formula, 

Wave Equation for a Quantum Free 
Particle

Then, finally, putting everything together, we have the desired wave equation 
for a quantum free particle,
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This is the 1D Schrodinger’s Equation for a free particle.

(quantum wave function for a free particle)



Free Particle Wave Function &
Uncertainty Principle

So, the wave function for a free 
particle is a complex function with 
sinusoidal real and imaginary parts

A quantum free particle in principle exists in all space               , , 

& (wave function extends into all space & time)

but 0 & 0 (energy and momentum is fixed)
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More Realistic Particle (Wave Packets)

Under more realistic circumstance, a particle 
will have a relatively well defined position 
and momentum so that both x and p will 
be finite with limited spatial extents.

A more localized quantum particle can not be a 
pure sine wave and it must be described by a 
wave packet with a combination of many sine 
waves.
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The coefficient A(k) gives the relative proportion of the various sine waves with 
diff. k (wave number).

(a linear combination of many 
sine waves.)



Wave Packets

Recall: Combination of two sine waves  
 more localized than a pure sine wave.



Wave Packets

A wave packet is a linear combination of many sine waves.
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So, the wave number k is directlly proportional to the momentum of the 

quantum particle.



Wave Packets (characteristic)

p smaller x bigger

A(k) gives the spread 
in k (momentum P)



Wave Packets (characteristic)

p bigger x smaller

The is consistent with: !x p   



Quantum Wave Function
In QM, the matter wave postulated by de Broglie is described by a complex-
valued wavefunction (x,t) which is the fundamental descriptor for a quantum 
particle.

x,t

Re/Im (x,t)

(x,t) is a complex-valued function of 
space and time.

1. Its absolute value squared 
gives the probability of finding the 
particle in an infinitesimal volume dx
at time t.
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2. For any Q problem:
 The goal is to find            for the 

particle for all time.
 Physical interactions involves 

“operations” (O) on this wave 
function:          

 Experimental measurements will 
involve the “products”,



The General 1D Schrodinger Equation for 
a Quantum Particle (not free)

It is basically a statement on the conservation of energy!
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Recall that the wave equation for a quantum free particle is



The General 1D Schrodinger Equation for 
a Quantum Particle (not free)

As we have seen for the free quantum particle case, 

- the first term (2nd order spatial derivative term) in the Schrodinger equation 
is associated with the Kinetic Energy of the particle

- the last term (the 1st order time derivative term) is associated with the total 
energy of the particle

- now we also include the Potential Energy term U(x)(x)
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Now, for the general case: 

The Schrodinger equation is again a statement on the conservation of energy.



The Schrodinger Equation
In Classical Mechanics, we have the Newton’s equation which describes the 
trajectory x(t) of a particle:

mF x

In EM, we have the wave equation for the propagation of the E, B fields:
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In QM, Schrodinger equation prescribes the evolution of the wavefunction
for a particle in time t and space x under the influence of a potential energy U(x),
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(general 1D Schrödinger equation)

U(x)



Quantum Wave Function

The wave function              for a 
quantum particle is a complex function 
with sinusoidal real and imaginary 
parts

( , )x t



Since                                      is a probability, it has to be normalized !

Wave Function and Probability
2 *( , ) ( , ) ( , )x t x t x t   

is the probability distribution function for the quantum particle.

In other words,

is the probability in finding the particle in 
the interval                    at time t. [ , ]x x dx

(shaded area)
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(At any instance of time t, the particle must be somewhere in space !)
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Stationary States
For most problems, we can factor out the time dependence by assuming the 
following harmonic form for the time dependence,
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With                 , we can rewrite the time exponent in terms of E,
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is a state with a definite energy E and is called a stationary state.( , )x t
( )x is called the time-independent wave function.



The Time-Independent Schrödinger 
Equation
Substituting this factorization into the general time-dependent Schrodinger 
Eq, we have
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(time-independent Schrodinger equation)



More on (time-independent) Wavefunction

So, in general, the probability in finding the particle in the interval [a,b] is 
given by:
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Note:  is not the probability density
is the probability density.
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More on (time-independent) Wavefunction

In general, any experimental observable (position, momentum, energy, etc.) 
O(x) will have an expectation value given by:
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• Expectation values of physically measurable functions are 
the only experimentally accessible quantities in QM.

• Wavefunction          itself is not a physically measurable 
quantity.

( )x

Note:

O can be x, p, E, etc.

Other physical observables can be obtained from (x) by the following operation: 

example (position x):
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- is called the expectation value (of x): it is the experimental 
value that one should expect to measure in real experiments !

x



Solving QM Problems with (time-
independent) Schrodinger Equation

Given: A particle is moving under the influence of a 
potential U(x).

Examples: • Free particle: U(x) = 0

• Particle in a box:

• Barrier:

• HMO:

0, 0
( )

,

x L
U x

elsewhere

 
 

0 , 0
( )

0,

U x L
U x

elsewhere

 
 


21
( ) '

2
U x k x



Solving QM Problems with (time-
independent) Schrodinger Equation

Solve time-independent Schrodinger equation for (x) as a function of energy E,

with the restrictions:

• and              are continuous everywhere for smooth U(x).

• is normalized, i.e., 

• Bounded solution: 
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( ) 0x as x  

Then, expectation values of physical measurable quantities can be calculated
from (x) .

The general process in solving a quantum problem under the influence of a
given potential U(x) involves:



Particle in a Box

A 1-D box with hard walls:

(0) ( )U U L   (non-penetrable)

A free particle inside the box:

( ) 0U x  (inside box)

No forces acting on the particle 
except at hard walls.

P (in x) is conserved between 
bounces

|P| is fixed but P switches 
sign between bounces.

Classical Picture



Particle in a Box (Quantum Picture)
The situation can be described by the following potential energy U(x):
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The time-independent Schrodinger equation is:

Recall, this is basically

KE PE Total E+ =

Problem statement: For this U(x), what are the possible wave functions  (x) and 
their corresponding allowed energies E ?



Inside the box,                 , U(x) = 0, and the particle is free.  From before, 
we know that the wave function for a free particle has the following form:

Wave functions for a Particle in a Box
0 x L 

1 2( ) ikx ikx
inside x A e A e   (linear combination of the two 

possible solutions.)

where A1 and A2 are constants that will be determined later.

Outside the box,                 , and the particle cannot exist outside the box and( )U x  

( ) 0outside x  (outside the box)

At the boundary, x = 0 and x = L,the wavefunction has to be continuous:
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Wavefunctions for a Particle in a Box
Let see how this boundary condition imposes restrictions on the two 
constants, A1 and A2, for the wave function.

Using the Euler’s formula, we can rewrite the interior wave function in terms 
of sine and cosine:
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Imposing the boundary condition at x = 0, 
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Wavefunctions for a Particle in a Box

Now, consider the boundary condition at x = L:

( ) sin 0inside L C kL  

For a non-trivial solution (        ), only certain sine waves with a 
particular choice of wave numbers (k) can satisfy this condition:
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This implies that the wavelengths within the box is quantized !
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Allowed wavefunctions must have wavelengths exactly fit within the box !



Since     is quantized, only a discrete set
of            is allowed as solutions,

Wavefunction for a Particle in a Box
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Rewriting this, we have, 
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(similar to standing waves on a cramped string)

2

5 / 2

nk

Graphically, it looks like
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Quantized Energies for a Particle in a 
Box

Since the wave number kn is quantized, the energy for the particle in the box is 
also quantized:
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Note: the lowest energy 
with n = 1 is not zero:
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1 2
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h
E
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n = 0 gives  (x) = 0 
and it means no particle.

(n is called the 
quantum number)


