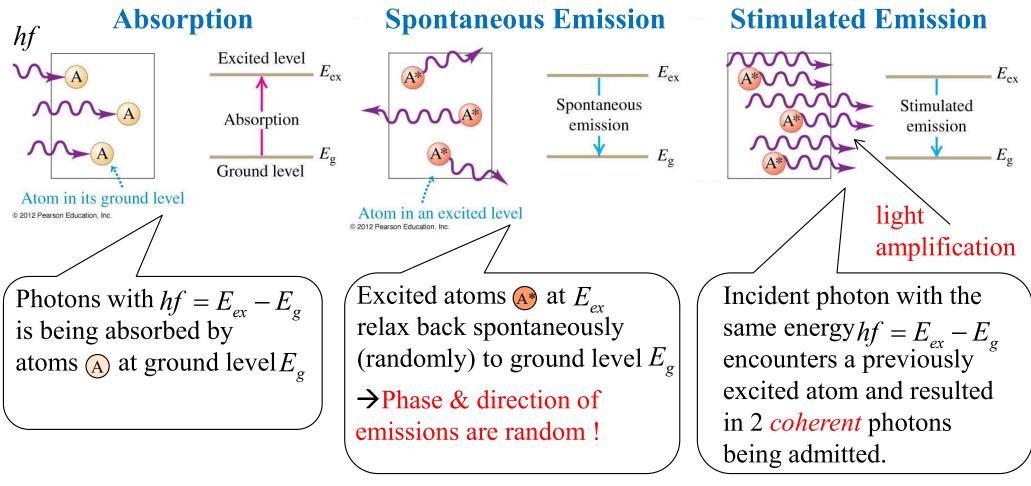

Laser

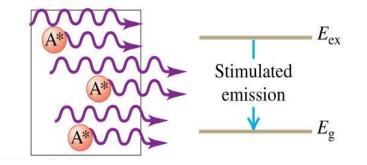
Laser = "light amplification by stimulated emission of radiation"

It is a mechanism to produce a beam of highly *coherent* and nearly monochromatic light from the *cooperative* emission from many atoms.


To understand it, need two new concepts from QM:

Stimulated Emission Population Inversion

Atoms Interactions with Light

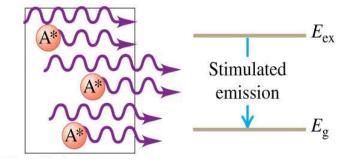

Atoms interact with light in three primary processes:

(Processes which we have learned previously)

(New "resonance" process)

Stimulated Emission & Population of Excited Atoms

Stimulated emission needs incident photon to interact with *previously* excited atoms


At *thermal equilibrium* at a given T, the number of atoms at a given energy state E is given by the Maxwell-Boltzman distribution (Ch. 18),

 $n(E) = Ae^{-E/kT}$ (where A is a normalization constant)

So, if E_g is the ground state energy and E_{ex} is the energy for the excited state, the ratio of numbers of atoms in the two states is,

$$\frac{n_{ex}}{n_g} = \frac{Ae^{-E_{ex}/kT}}{Ae^{-E_g/kT}} = e^{-(E_{ex}-E_g)/kT}$$

Stimulated Emission & Population of Excited Atoms

Stimulated emission needs incident photon to interact with *previously* excited atoms

For a typical value of $E_{ex} - E_g = 2eV$ at T = 3000K,

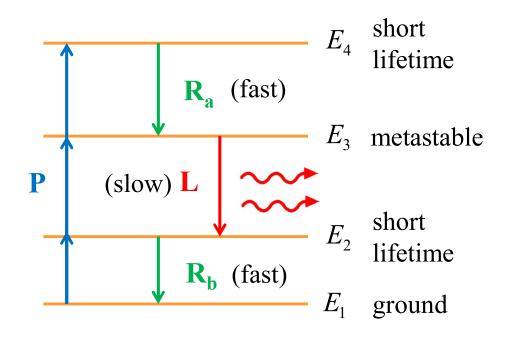
$$\frac{E_{ex} - E_g}{kT} = \frac{(2eV)(1.6 \times 10^{-19} J / eV)}{(1.38 \times 10^{-23} J / K)(3000K)} = 7.73$$

And, the ratio of relative population between the excited & ground states is very small,

$$e^{-(E_{ex}-E_g)/kT} = e^{-7.73} = 0.00044$$

At equilibrium, almost all atoms are at the ground state !

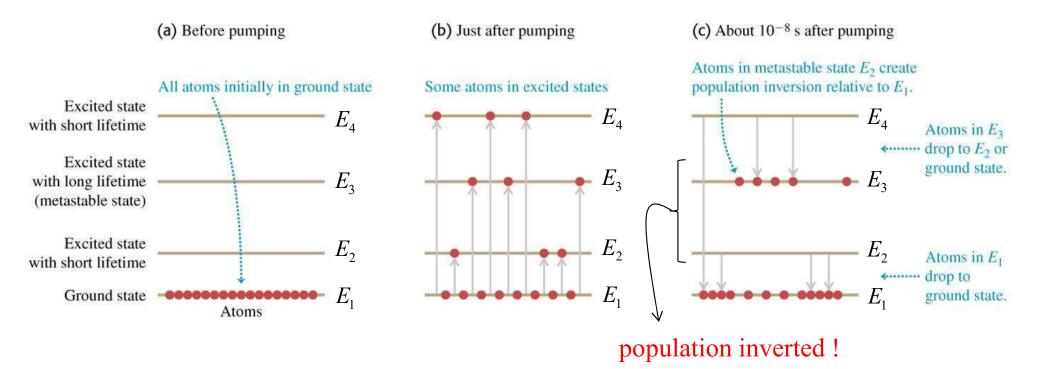
Making a Laser


In order to have a sustained stimulated emission, i.e.,

rate (stimulated emission) > rate (absorption)

We need to have an inverted ratio $\frac{n_{ex}}{n_g} > 1$. This is called **Population Inversion**. This is a *non-equilibrium* situation and it cannot occur without an external input AND with atoms having the right kind of excited states.

One such system is the *four-level laser*: E_4 short lifetime 10^{-8} s R_a (fast) To provide the external input, E_3 metastable the laser can be "pumped" $10^{-3}s$ optically, electrically, or by (slow) L $\rightarrow \mathbf{P}$ other means so as to excite E_2 short lifetime atoms out from the ground $10^{-8} s$ **R**_b (fast) state. E_1 ground


Making a Laser

(NOTE: I am calling the ground state as E_1 and the first excited state E_2 in the standard convention while your book starts the first excited state as E_1 .)

Making a Laser

The key in the four-level laser system is the relatively long lifetime for $E_3(10^{-3}s)$ as compare with the other two excited states: E_2 and $E_4(10^{-8}s)$.

Over the next $10^{-3}s$, "enhanced" stimulated emission will then produce a coherent laser beam with frequency $f = (E_3 - E_2)/h$.