
Bohr’s Model (mathematical details)

Now, consider the total energy for an e in an orbit at rn,
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Bohr’s Model (mathematical details)

Recall, from F = ma, we have
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So, as in any circular motion under 1/r2 type of force, we have / 2K U 

This gives the total energy for an e in an orbit at rn ,
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   (energy levels of a Bohr’s atom)

Note: Energy levels are quantized as a consequence of the electron behaving 
as a wave in the atom (angular momentum quantization).



Bohr’s Model (notes)

• The ground state energy of the H-atom is given by E1 = -13.6 eV when n = 1.
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Agree well with previous 
experimental value using 
wavelength measurements.
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• Comparing the expression for H-atom’s energy with the empirical formula 
derived by Balmer, we can derive an explicit expression for the Rydberg 
Constant,

• The energy required to remove an electron completely is given by the transition 
from                        and it is called the ionization energy,



Hydrogen-like Atoms
Singly ionized helium (He+), doubly ionized lithium (Li2+) are examples of 
hydrogen-like atoms with a single electron around the nucleus.

For hydrogen-like atoms, e2 in all 
equations from previous analysis 
is replaced by Ze2, where Z is the 
atomic number of the element.

All mathematical results follow 
through but with the following 
changes:
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Blackbody Radiation: Continuous 
Spectra
In contrast to line spectra emitted from excited atoms in a diluted gas, 
radiations from many thermally excited atoms in a solid will in general emit 
a continuous spectrum with characteristics depending on its temperature.  



Blackbody Radiation: Continuous 
Spectra
In contrast to line spectra emitted from excited atoms in a diluted gas, 
radiations from many thermally excited atoms in a solid will in general emit 
a continuous spectrum with characteristics depending on its temperature.  

Typically, a good light absorber will also be a good emitter so that a 
perfect emitter is typically called a “blackbody”. 

Radiations emitted from a “blackbody” will be characteristic of that particular 
system since all other strayed radiations from the surrounding will be 
absorbed by the system and not reflected back out.

The continuous spectrum emitted by such a body is called blackbody 
radiation.



Blackbody Radiation
The total intensity (per unit surface 
area) of emitted light by a 
blackbody at absolute temperature 
T is given by the Stefan-
Boltzmann Law:

4I T

where  is call the Stefan-
Boltzmann constant and it has the 
following value:
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Blackbody Radiation: Spectral Emittance

The intensity is not uniformly distributed over all wavelengths.  The intensity 
distribution for a given range of wavelength is called the spectral emittance I().

(Experimental observed spectral emittance for 
different T’s.)

Note: as expected,
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There is also the experimentally obtained 
Wien displacement law:

3
m 2.90 10T m K   

As T , dominant  (m) moves to shorter .



Blackbody Radiation: Cavity Radiation

Electric Forge

A cavity with a small opening is a 
good model for a “blackbody” !

D_cavity



Blackbody Radiation
A cavity with a small opening is a good model for a blackbody.  Most 
importantly, one can derive the spectral emittance for a blackbody using 
such a cavity.

Model:

A metallic unit cube cavity filled with 
EM waves forming standing waves
(normal modes) with nodes at the 
walls.

For a given range of wavelengths                 , the spectral emittance can be 
calculated as the combined energy from all the allowed standing EM waves 
(normal modes) within a given range of wavelengths.
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Blackbody Radiation

( ) ( )I d N E d   

One can calculate the spectral emittance and it is given by:

where
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is the # of EM modes (standing waves) allowed in the unit cube within a 
given wavelength range:  

and      is the average energy per EM mode (standing wave) within the 
cavity.
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As we will see, the different between the (classical) Rayleigh 
prediction (incorrect) and the (quantum) Planck prediction depends on 
how      is calculated !E



Blackbody Radiation
Distribution of energy states:

The energy of a given standing wave (normal modes) is distributed 
according to the Maxwell-Boltzmann distribution:

/

( )
E kTe

P E dE dE
kT





where k is the Boltzmann’s constant and T is the absolute temperature.

(Recall the special case for molecular speeds: the Maxwell’s distribution of 
molecular speeds.)



Blackbody Radiation
Classical Rayleigh Prediction (incorrect):

To calculate      with E assumed to be a continuous variable from 0 to     , i.e., 
all energies are possible. 
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Note: P(E) is already normalized.  The 
denominator is 1. We are keeping it so 
that we will be consistent when we 
consider the discrete case later.

So, the spectral emittance is 
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 (Rayleigh-Jeans Law)

Problems with this classical prediction (“ultraviolet catastrophe”):
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This is absolutely not physical! 
Intensity of the emitted light 
(radiated energy) must remain finite !
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Blackbody Radiation
Max Planck in 1900 proposed a solution to this problem.

A radically different way to calculate      for the EM waves inside the cavity:E

E is not a continuous variable and E can only take on discrete values !
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And, the discrete energy increment for the EM waves is given by:
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Blackbody Radiation

Then, the spectral emittance in this quantum calculation becomes:
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to the classical result if 
h = E = 0.

(Taylor’s expansion of e)



Planck’s Result in CM & QM Limits
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There is no ultraviolet catastrophe in QM limit !

(short wavelengths, high photon energy) QM regime
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Blackbody Radiation (Review)
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NOT COMPLETE Classical Prediction:

CORRECT QM Prediction:

Light must come in discrete quanta !



Blackbody Radiation (Review)
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NOT COMPLETE Classical Prediction:

CORRECT QM Prediction:

Light must come in discrete quanta !
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Laser

Laser = “light amplification by stimulated emission of radiation”

Stimulated Emission

It is a mechanism to produce a 
beam of highly coherent and 
nearly monochromatic light 
from the cooperative emission 
from many atoms.

To understand it, need two new 
concepts from QM:

Population Inversion
A HeNe Gas Laser



Atoms Interactions with Light
Atoms interact with light in three primary processes:

Stimulated EmissionAbsorption Spontaneous Emission

Photons with 
is being absorbed by 
electrons      in atoms at 
ground level

ex ghf E E 

gE

Electron     in excited atoms
at      relax back spontaneously 
(randomly) to ground level

exE

 Phase & direction of 
emitted photons are random ! 

(Processes which we have learned previously) (New “resonance” process)

Incident photon with the 
same energy
encounters a previously 
excited atom and resulted 
in 2 coherent photons 
being admitted.
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light 
amplification
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hf
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hf

gE

exE

gE

hf



Stimulated Emission & Population of 
Excited Atoms

Stimulated emission needs incident photon to 
interact with previously excited atoms

So, if      is the ground state energy and      is the energy for the excited 
state, the relative ratio of numbers of atoms in the two states is, 

(where A is a normalization constant)

At thermal equilibrium at a given T, the number of atoms at a given energy 
state E is given by the Maxwell-Boltzman distribution (Ch. 18),
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Stimulated Emission & Population of 
Excited Atoms

Stimulated emission needs incident photon to 
interact with previously excited atoms

exE

gE

hf

And, the ratio of relative population between the excited & ground states is 
very small, 
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 / 7.73 0.00044ex gE E kT
e e
   

3000T K

  
  

19

23

2 1.6 10 /
7.73

1.38 10 / 3000
ex g

eV J eVE E

kT J K K






    



So, at equilibrium, almost all atoms are at the ground and NOT excited state !



Making a Laser

However, this is a non-equilibrium situation and it cannot occur without an 
external input AND with atoms having the right kind of excited states.

rate (stimulated emission) > rate (absorption)

This means that we need to have an inverted ratio            . This condition is 
called Population Inversion.

1ex

g

n

n
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In order to have a sustained stimulated emission, we need to have more
atoms at the excited state than at the ground state in the presence of incident 
photons, so that 



Making a Laser

One such system is the four-level laser:

To provide the external input, 
the laser can be “pumped” 
optically, electrically, or by 
other means so as to excite 
atoms out from the ground 
state.
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The key in the four-level laser system is the relatively long lifetime for      
as compare with the other two excited states:      and                 . 8
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Making a Laser

1E

4E

3E

2E

P

Ra (fast)

short 
lifetime

short 
lifetime

metastable

ground
(fast)Rb

L(slow)

(NOTE: I am calling the ground state as      and the first excited state      in 
the standard convention while your book starts the first excited state as     .)1E

1E 2E



Making a Laser
The key in the four-level laser system is the relatively long lifetime for      
as compare with the other two excited states:      and                 . 8
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Over the next          , “enhanced” stimulated emission will then produce a 
coherent laser beam with frequency                          . 3 2f E E h 
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Before pumping

All electrons initially at E1
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Just after pumping

Some electrons are excited

population inverted !
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3E

4E
Excited electrons 
at E4 drop to E3

Excited electrons 
at E2 drop to E1

About after pumping8 310 10s s 

Population inversion relative to E2
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Chapter 40/41: Quantum Mechanics
 Wave Functions & 1D 

Schrodinger Eq

 Particle in a Box

 Wave function

 Energy levels

 Potential Wells/Barriers & 
Tunneling

 The Harmonic Oscillator

 The H-atom



Electron Waves

In the Bohr’s model, angular momentum of the electron 
in a particular Bohr’s orbit is quantized.  

In the de Broglie wave hypothesis, one can imagine an 
electron as a standing wave in a given energy state n.

So, what is the equation which describes these matter 
wave?



Wave Equation for a Mechanical String

For a wave on a string (1D) moving with speed    , a wave function              
must satisfy the wave equation (Ch. 15):

 ,y x t
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, ,1y x t y x t

x v t

 


 

 ,y x t

v

It has the following sinusoidal form as its fundamental solution:

     , cos siny x t A kx t B kx t    

where                 is the wave number and                is the angular frequency 
of the wave.   [A and B determines the amplitude and phase of the wave.]
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By substituting the fundamental wave function into the PDE, we can arrive 
at the algebraic relation (dispersion relation) that       and      must satisfy:

Wave Equation for a String
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1. Each spatial derivative of             will pull out one k:  ,y x t

So, the 2nd order spatial derivative gives,
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(Obviously, don’t 
forget the signs.)



Wave Equation for a String
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check...

2. Each time derivative of             will pull out one  :  ,y x t

So, the 2nd order time derivative gives,
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Putting these back into the wave equation, we then have,
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is intimately linked to the form of the wave equation                                        !

Thus, the fundamental property of a wave

Wave Equation for a String
Putting the definitions for        and       back into the dispersion relation, we 
have the familiar relation for wavelength, frequency, and wave speed.
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Now, we will try to use the same argument to find a wave equation for a 
quantum wave function.  
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Now, from the de Broglie relations, the energy and momentum of this 
quantum free particle can be related to its wave number     and angular 
frequency      through:

Since the reference point for          is arbitrary, we can simply take                .

Then, the total energy E of a free particle will simply be its kinetic energy,

Wave Equation for a Quantum Free 
Particle

A free particle has no force acting on it.  Equivalently, the potential energy 
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We now assume the same fundamental sinusoidal form for the wave function of 
a quantum free particle with mass m, momentum            and energy             :

Wave Equation for a Quantum Free 
Particle

Thus, a correct quantum wave function for a quantum free particle must 
satisfy this quantum dispersion relation for      and      :k
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(non-relativistic)

Recall from our discussion on the mechanical wave, we have the following:
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