Let look at the equation for the relativistic kinetic energy of a moving particle again.

$$KE = \frac{mc^2}{\sqrt{1 - v^2/c^2}} - mc^2$$

→ It separates into two terms: • 1st depends on speed of the particle
 • 2nd is a constant term *independent* of motion

 \rightarrow KE can be interpreted as the *difference* between a **total energy** term depending on motion and a constant **rest energy** term independent of motion.

$$KE = \frac{mc^2}{\sqrt{1 - v^2/c^2}} - mc^2 = E - mc^2$$

total relativistic energy (E) rest energy

$$E = \gamma mc^2 = \frac{mc^2}{\sqrt{1 - v^2/c^2}}$$

E is the **total relativistic energy** for a relativistic particle.

and, its kinetic energy KE is given by,

$$KE = E - mc^{2} = \frac{mc^{2}}{\sqrt{1 - v^{2}/c^{2}}} - mc^{2} = (\gamma - 1)mc^{2}$$

Note 1: for v = 0, $\gamma = 1$ and $KE = (\gamma - 1)mc^2 = (1 - 1)mc^2 = 0$

- KE = 0 for a particle at rest is expected...

- But, there is a residual Total Relativistic Energy $E = mc^2 \neq 0$ even for a particle *at rest*. The quantity mc^2 is called the **Rest** Energy.

- Rest Energy $(mc^2) \rightarrow$ Independent of velocity
 - Proportional to the mass of the particle
 - Mass is a form of energy

Note 2: Since $E = \gamma mc^2$ is the **total** relativistic energy of the system,

E is *conserved* in *all* processes !

- It combines with the two classical independent conservation laws:
 - conservation of energy
 - conservation of mass
- The statement on the Conservation of Total Relativistic Energy is more *general*

Note 3:

- →The mass "*m*" which we have been using is a *constant* in our analysis. It is called the **rest mass** ("proper" mass) and is the mass of an object measured by an observer *stationary* with the object.
- → The quantity $m_{rel} = \gamma m$ is called the "relativistic mass" and is *not* a constant for a moving object and is measured by an observer *not* at rest with the object.

Relativistic Momentum & Energy

Relativistic Momentum:

$$\vec{\mathbf{P}} = \gamma m \vec{\mathbf{v}} = \frac{m \vec{\mathbf{v}}}{\sqrt{1 - v^2/c^2}}$$

Momentum of a particle moving with velocity \vec{v} as measured in the lab frame (S-frame).

Relativistic Energy:

$$E = \gamma mc^2 = \frac{mc^2}{\sqrt{1 - v^2/c^2}}$$

Total energy of a particle moving with velocity \vec{v} as measured in lab frame (*S*-frame).

Conservation Laws

The following set of equations form the generalized conservation laws in Special Relativity.

 $\begin{cases} E_i = E_f & \text{Conservation of Relativisity Energy} \\ \vec{\mathbf{P}}_i = \vec{\mathbf{P}}_f & \text{Conservation of Relativisty Momentum} \end{cases}$

AND, these conservation laws apply to *all* processes equally in *all* inertial reference frames !

Example 37.11: A Relativistic Collision

Initially, both protons move in opposite directions, net linear momentum is zero. The three particles after collision are *at rest* again with net linear momentum equals to zero. Thus, relativistic momentum is by design conserved.

We now need to consider the conservation of total relativistic energy.

Question: Find initial velocity of proton.

Example 37.11

Before After

$$2(\gamma M_{proton}c^2) = 2M_{proton}c^2 + m_{pion}c^2$$

$$2(\gamma - 1)M_{proton} = m_{pion}$$

$$\gamma = 1 + \frac{m_{pion}}{2M_{proton}} = 1 + \frac{2.40 \times 10^{-28} kg}{2(1.67 \times 10^{-27} kg)} = 1.072$$

$$\gamma^{2} = \frac{c^{2}}{c^{2} - v^{2}} \rightarrow \gamma^{2}c^{2} - \gamma^{2}v^{2} = c^{2} \rightarrow v = c\sqrt{1 - 1/\gamma^{2}}$$

$$v = c\sqrt{1 - 1/1.072^{2}} = 0.360c$$

Note: Mass *by itself* is not conserved in this process!

New Energy Units

Electron Volt (eV):

The energy equals to moving one positive test charge e+ (1 Coulomb) across an electric potential of 1 volt.

$$1eV = (1.6022 \times 10^{-19} C)(1V) = 1.6022 \times 10^{-19} J$$

Example: Rest Mass Energy of an electron $m_e = 9.109 \times 10^{-31} kg$

$$E_{0} = m_{e}c^{2} = 9.109 \times 10^{-31} kg \left(2.997 \times 10^{8} m / s\right)^{2}$$
$$= 8.18171 \times 10^{-14} J \left(\frac{1eV}{1.6022 \times 10^{-19} J}\right) = 5.11 \times 10^{5} eV = 0.511 MeV$$

 $m_e = 0.511 MeV/c^2 \iff (\text{mass of } e \text{ in units of } eV \text{ and } c)$

Energy-Momentum Relation

$$E = \gamma mc^{2} \qquad p = \gamma mv$$

$$E^{2} = \gamma^{2}m^{2}c^{4} \qquad c^{2}p^{2} = \gamma^{2}m^{2}v^{2}c^{2}$$

$$E^{2} = \frac{m^{2}c^{4}}{1 - v^{2}/c^{2}} \qquad c^{2}p^{2} = \frac{m^{2}v^{2}c^{2}}{1 - v^{2}/c^{2}}$$

$$E^{2} - c^{2} p^{2} = m^{2} c^{4} \left(\frac{1}{1 - v^{2}/c^{2}} - \frac{v^{2}/c^{2}}{1 - v^{2}/c^{2}} \right)$$

$$E^2 - c^2 p^2 = m^2 c^4$$

Energy-Momentum Relation

$$E^2 - c^2 p^2 = m^2 c^4$$

Similar to the space-time interval $ds^2 = dx^2 - c^2 dt^2$ which is *invariant* for *all* inertial observers (independent of relative motion), the combination $E^2 - c^2 p^2$ is also independent of motion and is an *invariant* quantity

→ Both *E* and *P* will change depending on the relative *S*-*S*' velocity but $E^2 - c^2 p^2$ will not.

Note:

For particles *at rest*, p = 0, this expression gives $E = mc^2$ which is the rest mass energy as previously.

For *photons* with no mass, E=pc, which can also be shown from Maxwell's Equations.

Relativity and EM

Consider the force on a moving test charge q from a neutral current carrying wire:

We further assume that the test charge q moves with the same velocity \vec{v} as the drift velocity of the negative charges in the wire, then \vec{B} is into the page at q.

The moving test charge q will feel an upward magnetic force.

There is *no* net electric force: wire is assumed to be neutral.

Relativity and EM

In moving frame, both \bigcirc and \bigcirc are stationary but by design \bigcirc are now moving to the left creating the same current.

+q is not moving so that there is *no* magnetic force due to current.

Relativity and EM

- is further separated since proper distance is larger than measured in the lab frame (S – frame)
- is tighter together due to length contraction

Now, there is a net charge on the wire in this frame !

q will again feel a force pushing it upward but the force is purely *electric* in this case.

PHYS 262

George Mason University

Prof. Paul So

Chapter 38: Light Waves Behaving as Particles

- Photoelectric Effects
- □ X-ray Production
- Compton Scattering & Pair Production
- Heisenberg Uncertainty Principle
- □ Wave/Particle Duality

Quantum Nature of Light

Two seemingly paradoxical nature of light (EM waves):

→ By the end of the 19th century, most physicists (Maxwell, Hertz, and others) have firmly established that electromagnetic waves are waves which exhibit interference and diffraction (Ch. 35-36).

→ But newer experiments on the emissions and absorptions of EM waves have shown behaviors which CANNOT be explained with light being a wave... It requires a radical new thinking of light as *quantized packets of energy* called **photons** (as particles).

Quantum Nature of Light

Photoelectric Effect: When light struck a metal surface, some electrons near the surface will be emitted. The absorption and emission process can only be explained by assuming light is *quantized* into packets of energy.

X Rays Production, Compton Scattering, & Pair Production:

X-rays were discovered in 1895 in high-voltage electric discharge tubes but no one understood the process in their production and what determine their wavelengths. In particular, when x-rays collide with matter, the scatter rays act nonclassically.

Light as Particles (Photons)

In 1905, Einstein published his theory on photoelectric effect which resulted in his Nobel prize in 1921.

Built upon Max Planck's hypothesis of quantized light (photon). [later]

$$E = hf = \frac{hc}{\lambda}$$
 (energy of a photon)

where $h = 6.626 \times 10^{-34} J \cdot s$ is a universal constant called **Planck's Constant**. Note the smallness of this number.

The Photoelectric Effect

An experimental demonstration of the *particle* nature of light.

Electrons on the metal surface (cathode) are normally bounded to the positive ions on the surface.

The potential energy which an *e* needs to escape the surface is call the **work function** ϕ

 V_A can help (+) or inhibit (-) the ejected e to get from cathode to anode.

The Photoelectric Effect

The stopping potential at which the current ceases has absolute value V_0 .

When V_{AC} (reversed) $\rightarrow -V_0$

Above a certain potential strength V_0 , NO e- can reach the anode!

The minimum V_0 needed to stop all egetting across to the anode is called the **stopping potential** V_0 and

 V_0 is basically a direct measurement of the maximum KE (K_{max}) of these electrons and they are related by,

$$K_{\max} = eV_0$$

The Photoelectric Effect

Classical Expectation:

- Energy of EM wave depends on intensity
 → emission will monotonically depend on intensity
- Energy of light not dependent on f
- For low intensity light, emission is expected to be delayed

Unexpected Results:

- No electrons are ejected if $f < f_0$ (threshold frequency) independent of light intensity
- Even with $f > f_0$ but at very low intensity emission is *immediate* (not delayed)
- V_0 is *independent* of intensity

Photoelectric Effect

 $f_{2} > f_{2}$ I is constant. $-V_{02} - V_{01}$ 0 The stopping potential V_0 (and therefore the maximum kinetic energy of the photoelectrons) increases linearly with

frequency: since $f_2 > f_1$, $V_{02} > V_{01}$.

More Unexpected Result:

The dependence of V_0 (K_{max} of the ejected electrons) on f is also another unexpected (unexplainable by classical physics) result.

→ Energy of light was NOT expected (classically) to depend on its frequency f.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Einstein's Photon Explanation

The interaction is an *all-or-none* process. **Electrons bounded to the surface of the metal can absorb a single photon at a time or none at all.** If *hf* is large enough to overcome ϕ , an electron will be ejected with kinetic energy K_{max} .

By energy conservation, we have: $K_{\text{max}} = hf - \phi$ ϕ depends on the metal surface $eV_0 = hf - \phi$

Einstein's Photon Explanation

Unexpected Results Explained:

• Since K_{max} has to be positive, if $hf < \phi$, no electrons will gain enough kinetic energy to leave. So, there has to be a threshold frequency f_0 and is given by,

$$hf_0 = \phi$$

- Since intensity *I* is only proportional to the # of photons and the interaction is for individual photons, K_{max} (or V_0) depends only on the energy of each *individual* photon *hf* and not on the light's intensity, i.e.,
 - → Increasing intensity will only increase the # of photo-electrons being ejected and it will increase the photocurrent being observed but it will NOT affect the stopping potential V_0 .
- More importantly, $K_{\max}(V_0)$ linear dependence on f is explicit with the equation

$$K_{\max} = eV_0 = hf - \phi$$

Notes

- Convenient Energy Units:

1eV = energy required to move one unit of charge across an electric potential of 1 V.

$$1eV = (1.602 \times 10^{-19} C)(1V) = 1.602 \times 10^{-19} J$$

$$h = 6.626 \times 10^{-34} J \cdot s \left(\frac{1eV}{1.602 \times 10^{-19} J}\right) = 4.136 \times 10^{-15} eV \cdot s$$

$$hc = 4.136 \times 10^{-15} eV \cdot s (3.00 \times 10^8 m/s) = 1.241 \times 10^{-6} eV \cdot m = 1241 eV \cdot nm$$

- Energy and Momentum of a Photon:

$$P = \frac{E}{c} = \frac{hf}{c} = \frac{h}{\lambda}$$

(momentum of a photon)

- The duality of light (wave & particle) applied to the entire EM spectrum !

Emission of Light as Particles: X-Ray Production

X-rays are produced when rapidly moving electrons that have been accelerated through a *large* potential difference (10^3 to 10^6 V) strike a metal target.

X-rays emission is the *inverse* of the photoelectric effect.

Photoelectric: $hf \rightarrow K$ of eX-Ray prod: K of $e \rightarrow hf$ Electrons are emitted thermionically from the heated cathode and are accelerated toward the anode; when they strike it, x rays are produced.

Discrete Set of λs :Two Processes

Classical EM \rightarrow *deceleration* of high energy e^- should produce EM waves in a *broad* range of *f*.

BUT, the observation is that ...

1. Independent of target material: *bremsstrahlung* (braking radiation) \rightarrow gives maximum *f* (energy) or minimum λ directly proportional to the energy of the accelerated eletrons.

$$\mathbf{V}_{AC} = hf_{\max} = \frac{hc}{\lambda_{\min}}$$

max KE of accelerated e

2. Dependent on target material, a *characteristic* spectrum of X-Rays will also be emitted \rightarrow electrons with sufficient *KE* can excite atoms in the target material. When they decay back to their ground state, light (X-Rays) will be emitted.

Medical Applications of X-Rays

© 2012 Pearson Education, Inc.

High-energy photons (such as X-Rays) can penetrate denser materials such as bones which low-energy photons (such as visible light) can not. Then, by measuring the degree of penetration, one can map out different biology structures in your body.

High-energy photons can also damage biological tissues by breaking molecular bonds and creating highly reactive free radical such as H or OH .

In 1923, Arthur H. Compton provided an additional direct conformation on the quantum nature of x-rays.

- X-rays of well-defined λ are made to fall on a graphite target
- For various scattering angle ϕ , intensities of scattered x-rays are measured as a function of the wavelength.

The scattered x-rays have intensity peaks at *two* wavelengths: λ_0 and λ' .

 $\Delta \lambda = \lambda' - \lambda_0$

is called the Compton Shift.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Classical prediction:

Electrons in graphite absorbs x-rays and reemit them back.

- If the electron is stationary, then the reemitted $\lambda' = \lambda_0$.
- But electrons are moving before & after scattering, so that λ' will be Dopper's shifted depending on *e*-'s velocity.

Classical prediction:

Since diff. electrons will have diff. velocity, the intensity profile for the scattered x-rays is expected to be a single peak with a spread around λ_0 .

But, the actual experiment gives *two peaks* with a *Compton Shift* which depends on ϕ . Classical physics can't explain this !

Quantum Explanation:

Compton and his co-workers showed that if we take the x-rays as particles with

$$E = hf$$
$$|p| = hf / c$$

and treat the scattering process as a "billiard-like" collision,

then, the observation of $\Delta \lambda$'s dependence on ϕ can be explained !

Recall:

$$E_{photon} = hf = \frac{hc}{\lambda} \qquad E_{electron} = \gamma mc^{2}$$
$$\left|\vec{\mathbf{P}}_{photon}\right| = \frac{h}{\lambda} \qquad \vec{\mathbf{P}}_{electron} = \gamma m\vec{\mathbf{v}}$$

(b) After collision: The angle between the directions of the scattered photon and the incident photon is ϕ .

Conservation of Total Relativistic Energy:

(before)

Note: high energy collision $\rightarrow e$'s speed might be relativistic !

Conservation of Relativistic Momentum:

(before) (after)

$$x - dir: \frac{h}{\lambda} = \frac{h}{\lambda'} \cos \phi + \gamma mv \cos \theta$$

$$y - dir: 0 = \frac{h}{\lambda'} \sin \phi - \gamma mv \sin \theta$$

 $\frac{hc}{\lambda} + mc^2 = \frac{hc}{\lambda'} + \gamma mc^2$

(after)

Incident photon: Target electron
wavelength
$$\lambda$$
, (at rest)
momentum \vec{p}

(knowns $\rightarrow \lambda$: given, ϕ : observation angle) 3 eqs. with 3 unknowns (θ, λ', v)!