
Lorentz Velocity Transformation
In S- frame, let say that we have an object moving in the x-direction with 
speed,
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Lorentz Velocity Transformation

Lorentz Transform gives: 
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Lorentz Velocity Transformation
In S’ - frame, the velocity of the object is defined as,
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Object moving at the speed of light:
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Lorentz Velocity Transformation

If the object has velocity components in y and z directions: v’y & v’z, how 
would these components transform (u is in x direction only)?
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Similarly for the z-component !



Lorentz Velocity Transform
From the principle of relativity, there should be no physical distinction for 
the two inertial observers in relative motion.

So the Lorentz Velocity Transform equation and its inverse transform 
should have the same form but with u -u for the inverse transform of v
in term of v’.
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Example 37.7

a) What is the probe’s velocity 
relative to earth?

b) What is the scoutship’s 
velocity relative to spaceship?

Setup: Two frames: SEarth, S’ Spaceship, u = + 0.900c

a) In S’-frame, the probe moves at   ' 0.700xv probe c

2

' 0.700 0.900
0.982

1 ' 1 (0.700)(0.900)
x

x
x

v u c c
v c

uv c

 
  

 



Example 37.7

a)  The scoutship’s speed is given in S-frame (with respect to Earth), 
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The scoutship’s speed with respect S’-frame is given by the inverse transform,



Relativistic Momentum & Energy
As we have seen, time intervals, length intervals, and velocity change 
according to the Lorentz Transformation depending on the observer’s 
frame of reference. 

( , ) ( ', ') Lorentz Transformationx t x t

Other dynamical quantities (such as momentum, energy, etc.) must also be 
appropriately expressed so that the laws of physics satisfy the following 
conditions:

• Satisfy the two postulates of Special Relativity:

• Laws of physics (e.g., conservation of momentum, conservation 
of energy, Newton’s laws) apply equally to all inertial observers.

• Speed of light in vacuum same for all inertial observers

• The modified relativistic dynamical quantities should reduce to the 
classical ones for u << c.



Relativistic Momentum & Energy
Relativistic Momentum:
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Relativistic Momentum & Energy
All laws of physics remain valid in all inertial reference frames means.

Conservation Laws for relativistic               must remain the same!& EP


 Experimentally, it has been shown repeatedly that it is (                            ) 
rather than their classical counterparts that are conserved in high energy 
collisions!
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Relativistic Force

d

dt


P
F

 Newton’s 2nd Law: same form as in the classical 
case but with relativistic momentum   .

Note: If            (no external force), momentum     as expected will be 
conserved in both relativistic & classical regimes ! 
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Let use the relativistic force to consider the work-energy theorem:
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Relativistic Work & Energy
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Relativistic Work & Energy
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We can integrate this by a simple change of variable.



Relativistic Work & Energy
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Relativistic Work & Energy

Putting everything together, 

2
2 2 2

2

2

21
1mc v

mv
c mcW

v c
 




2 22

2 2

2 22 2

2 2

1

11
1

v c
mc v c

v

mv

v c c
mc 









 
2

2 2

2 2

2
2

2 21
1

1

mcmv

v c c
cv c

v
m


 



2mv


2 2mc mv  2
2

2 2 2

2

21 1

mc
mc

v c
m

v
c

c
  

 



Relativistic Work & Energy
Applying the work-energy theorem, this amount of work done to accelerate 
the particle from 0 to v should equal to the change in KE.

(Laws of physics should be unchanged in relativity !)
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Relativistic KE  Classical KE

Slow moving particle regime               :v c

Using binomial theorem,
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Substituting this into the equation for Relativistic KE,
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This is the classical 
result for v << c.
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Total Relativistic Energy
Let look at the equation for the relativistic kinetic energy of a moving 
particle again.
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 It separates into two terms: • 1st depends on speed of the particle
• 2nd is a constant term independent of motion

 KE can be interpreted as the difference between a total energy term 
depending on motion and a constant rest energy term independent of motion.
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Total Relativistic Energy

E is the total relativistic energy for a relativistic particle.
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and, its kinetic energy KE is given by,



- But, there is a residual Total Relativistic Energy                            
even for a particle at rest.  The quantity mc2 is called the Rest 
Energy.

Total Relativistic Energy

Note 1: for v = 0,            and 

2 0E mc 

Rest Energy (mc2)   • Independent of velocity
• Proportional to the mass of the particle
• Mass is a form of energy

- KE = 0 for a particle at rest is expected…
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Total Relativistic Energy

Note 2: Since E =  mc2 is the total relativistic energy of the system, 

E is conserved in all processes ! 

- It combines with the two classical independent conservation laws:

 conservation of energy
 conservation of mass

- The  statement on the Conservation of Total Relativistic Energy is 
more general



Total Relativistic Energy

Note 3: 

The mass “m” which we have been using is a constant in our analysis.  
It is called the rest mass (“proper” mass) and is the mass of an object 
measured by an observer stationary with the object.

The quantity mrel =  m is called the “relativistic mass” and is not a 
constant for a moving object and is measured by an observer not at rest 
with the object.



Relativistic Momentum & Energy
Relativistic Momentum:
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Conservation Laws

Relativisity Energy

 Relativistiy Momentum
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The following set of equations form the generalized conservation 
laws in Special Relativity.

AND, these conservation laws apply to all processes equally in 
all inertial reference frames !



Example 37.11: A Relativistic Collision

Initially, both protons move in opposite 
directions, net linear momentum is zero.  The  
three particles after collision are at rest again 
with net linear momentum equals to zero.  
Thus, relativistic momentum is by design 
conserved.

Question: Find initial velocity of proton.

We now need to consider the conservation 
of total relativistic energy.



Example 37.11

Before After
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Note: Mass by itself is not conserved in this process! 
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New Energy Units

Electron Volt (eV):

The energy equals to moving one positive test charge e+ 
(1 Coulomb)  across an electric potential of 1 volt.
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Example: Rest Mass Energy of an electron
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Energy-Momentum Relation
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Energy-Momentum Relation
2 2 2 2 4E c p m c 

Similar to the space-time interval                              which is invariant for all
inertial observers (independent of relative motion), the combination                       
is also independent of motion and is an invariant quantity 

 Both E and P will change depending on the relative S-S’ velocity
but                    will not.

2 2 2E c p

Note:
For particles at rest, p = 0, this expression gives              which is the rest mass 
energy as previously.

2E mc

For photons with no mass, E=pc, which can also be shown from Maxwell’s 
Equations.
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