
Relativity of Length

 Distance between two points on a rigid body P & Q can be measured by a 
light signal’s round-trip time.
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As we have seen, Dt will be different for different inertial observers, l will 
also ! 



Proper Length
Similar to the concept of proper time which is the measured time 
interval of a clock which is at rest with the observer, proper length is 
the measured length of an object at rest with the observer.
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Observer O’ in S’- frame will measure proper time and proper length for 
the clock and ruler shown. 



Length Contraction (parallel to u)
Let consider a ruler at rest in the moving frame (S’) and it lays parallel to the 
direction of the relative motion between S and S’ (as shown previously).

Within S’- frame, the ruler is at rest with Mavis.

The length of the ruler is measured using a light-clock by measuring the time 
interval between two events (light leaving the laser and light arrives back to the 
source).  In this measurement process, light pulse travels a distance of a total of 
2l0 within a time interval of  Dt0.



Length Contraction (parallel to u)
Since both measurement events are at rest (same location) within S’-frame, Dt0

is the proper time measurement and we have,
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Now, let consider the description according to Stanley in S-frame.

The ruler according to Stanley will have a length of l and let the time of 
travel for the light pulse from the source to the mirror be Dt1.

(note: Since Stanley is measuring these from afar and he is in relative motion 
with respect to Mavis, his measurement of Dt1 will NOT be proper.)

and      is the proper length of the ruler.0l



Length Contraction (parallel to u)

Within the time interval Dt1, the mirror will have moved a distance of u Dt1

so that the actual distance that the laser light has to travel is,

1d l u t  D
Since the speed of light is also c in Stanley frame, we can also write,

1d c t D



Length Contraction (parallel to u)
Combing these two equations and eliminating d, we have 

1 1

1

c t l u t

l
t

c u

D   D

D 


Now, let consider the return trip of the laser light…

l

Let Dt2 be the time measured by Stanley for the light to travel back from the 
mirror back to the source.

Note that as the train moves forward, the source also moves forward to meet 
the laser light 



Length Contraction (parallel to u)
Combing these two equations by eliminating d, we have 
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Now, let consider the return trip of the laser light…

l

Let Dt2 be the time measured by Stanley for the light to travel back from the 
mirror back to the source.

Note that as the train moves forward, the source also moves forward to meet 
the laser light 



Length Contraction (parallel to u)

Analogous to the outgoing trip, the return trip of the laser light will be 
shortened by uDt2 and 
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Length Contraction (parallel to u)
From the time dilation formula, we also have

0t tD  D

Combing these two equations for Dt, we have
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Recall: The two timing
events for the length 
measurement are at rest in 
S’-frame so that Mavis 
measure the proper time Dt0

and proper length l0. 

On the other hand, Stanley’s 
measurements (Dt and l) of 
the same two events are not 
proper.

Note: The proper length l0 is always the longest among all inertial observers.



Unreality Check

According to Galilean Velocity Transformation, in S-frame, we have

On the out going trip, 1c c u  so that 1
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Now, the total time for the whole trip is now, 
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(all clocks clicks at the same rate)



Relativity of Simultaneity

Simultaneity

flash a flash b

Definition: Two flashes (event a and b) are considered to be simultaneous 
with respect to observer O if light from a & b (equal distance to observer 
O in the middle) arrive at the observer at the same time.

O



Relativity of Simultaneity

At time t = 0: 

O’ and O are respectively in the 
middle of A-B and A’-B’.

We will analyze the situation in Stanley’s S-frame in the following slides.



Relativity of Simultaneity
On the ground (S-frame) after some time t,

Light travels at the same speed c in both frames.



Relativity of Simultaneity

Then, a bit later, when Stanley see the 
lights from A and B reach him 
simultaneously, Mavis in S’- frame 
still waiting for the light from the 
lighting strike at the rear of the train 
to reach her.

According to Mavis, the lighting strikes at A’ and B’ did not 
occur simultaneously.  Stanley agrees with Mavis’ observation.

On the ground (S-frame) after some more time t,



Unreality Check
In the (incorrect) Galilean view, according to Stanley, cA’ and cB’ inside the 
train will be modified according to their relative speed u.
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Speed of light from A’ and B’ will be modified 
by the box car’s speed u.

So that light signals from A’ will speed up and signal from B’ will slow 
down in Stanley’s viewpoint.

This changes in speed for c will result in signals from A’ and B’ to arrive at 
O’ at the same time so that Stanley will say that both Marvis and himself 
will observe the lighting strikes simultaneously.



Sequence of Events according to 
Mavis (S’- frame) [box car stationary]
At t’ = 0, lightning strikes on B and B’:

Some time later, lightning strikes on A and A’:

A’ B’

O’

OA B

u

A’ B’

O’

O B

u

A

Note: 
1.platform is length 

contracted and the box 
car’s rest length is longer.

2.Speed of light is the same 
in both frame according 
to O’.



Sequence of Events according to 
Mavis (S’- frame)

Some time later, the light pulses reach O’

A’ B’

O’

O B

u

A



Sequence of Events according to 
Mavis (S’- frame)

A’ B’

O’

OA B

u

Some more time later, the light pulses reach O at the same time but light 
pulse from A’ still has not reach O’ yet.

Mavis see the flashes at different time but agrees with Stanley that the 
light signals in Stanley’s frame arrive at him at the same time.  Both see 
the same sequence of events but the notion of simultaneity is relative.



Ladder | Barn Paradox
Pictures from wikipedia

Barn’s
Frame

Ladder’s
Frame



Relative Speed of a Spaceship
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Summary of Results

u


S

S’

flash  a’ flash b’

Time Dilation: (moving clock runs slow)

2 2
0 , 1 1t t u c D  D  

Measured 
by S

Measured 
by S’

Length Contraction: (moving ruler get shorter)
0L L 

is measured at the same location wrt
S’

0tD

is measured at the same time wrt S’0l



Numerical Notes
1. Keep u in units of c, e.g., 0.8u c since we always have the ratio u/c.  Then,  

2. Since the ratio u /c occurs so often, it has a special symbol:  

   2 221 1 0.8 1 1 0.8c c     can be calculated simply.

2and 1 1u c    

3. Approximation when u << c (low speed: non-relativistic):

Recall Binominal Expansion:

(1 ) 1n n    for  small.



Numerical Notes
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3. Approximation when u << c (low speed: non-relativistic):

If u /c is small,            will be really small !2 22u c

Problem: calculator might treat 2 21 2u c

Relativistic (u=0.3c) : 

simply as 1 and you will loose all 
significant figures if you combine
1 and            .2 22u c
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Example: Muon Life Time

earth

cosmic 
rays atom

muon Muon is an  unstable elementary particle with:
•e-charge
•207 Me

Produced by cosmic rays (mostly high energy protons) 
collide with atoms high up in the atmosphere (>4 km).

In a the rest frame of the muon, it has an average 
life-time of:

2.2muon s 

Without Einstein’s SR, if 0.99muonu c
8 6avg. dist. travelled = 0.99(3 10 / )(2.2 10 )

600

m s s

m
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



Example: Muon Life Time

earth

cosmic 
rays atom

muon

Muon is typically produced high up in the 
atmosphere ~ 4 to 13 km.

So, according to Galilean relativity, muon can’t 
reach the surface of the earth & we should not be 
able to detect them !

However, we do detect cosmic rays muons on the 
ground !

Einstein’s Relativity resolves this apparent paradox…



Example: Muon Life Time
Earth’s frame:

u=0.99c

Earth is stationary & 
muon move downward 
toward the ground

The two events (creation and decay) that 
define the life-time of a muon occurs in the 
rest frame of the muon so that the 2.2s life-
time is the proper time for an observer in 
muon’s rest frame: 0 2.2t sD 

In contrast, in Earth’s frame, these two events do 
not occur at rest w/ Earth and the interval (Dt) 
defined by these two events will not be a proper
time interval as observed by someone in the 
Earth’s frame.  In fact, Dt will be dilated:
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Example: Muon Life Time
Earth’s frame: So, according to an Earth’s observer, avg. dist. travelled by 

these cosmic rays muons will be,
816avg. dist. travelled = ( )(0.99)(3 10 / ) 4800s m s m  

So, some muons will reach the surface of the earth !

Muon’s frame: Muon is stationary & the Earth moves upward at 0.99c.

u=0.99c

In the Earth’s rest frame, the atmosphere is at rest 
with the Earth and its height (l0=4000m) is the 
proper length measured by an earth observer.



Example: Muon Life Time
Muon’s frame:

u=0.99c

But in muon’s viewpoint, the Earth is moving 
toward it at 0.99c and the height of the atmosphere 
will be length contracted in muon’s frame !

20 1 0.99 (4000 ) 560 600
l

l m m m

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So, on average, some muons will be able to reach the 
surface of the Earth before it decays.



Lorentz Coordinate Transformation

( , , , ) ( ', ', ', ')x y z t x y z t

u in x-dir only.

Transforming the space-time coordinates from S to S’ correctly so that 
physical laws satisfying SR are invariant.



Lorentz Transformation
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Since O and O’ are in constant relative motion, the physical 
description and coordinate transformation between them should be 
symmetric !

with u -u



Lorentz Transformation (derivation)

Assume a modification of the Galilean Transformation by a still to be 
determined correction factor  : 

( ' ')x x ut 

Since S and S’ are in relative motion, we should have a symmetric equation 
for x’ with u  -u,

' ( )x x ut 

Now, set both S and S’ to coincide with each other at the origin at t = t’= 0 
and a light pulse is initiated at that time.



Lorentz Transformation (derivation)

Substitute these into the previous equations, we have: 

in S
 is the s  in both frames!
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Substitute t’ from the bottom equation to the top equation, we have: 
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(the desired  factor)

After a time t in S and a corresponding t’ in S’,
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Lorentz Transformation (derivation)

Now we try to eliminate the x variable in the original two equations:
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Expanding out the  factor on the RHS of the expression,
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Lorentz Transformation (derivation)
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(the desired Lorentz Transform in time)



Lorentz Transformation
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Lorentz Transformation
Reduction back to Galilean Transformation in the regime: u << c.

For
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(Galilean Transformation)

Einstein Relativity is more general and it reduces to previous results 
(Galilean) in the u << c limit.



Intervals between Two Events

We have defined Lorentz Transformation for an event P.  Now, we want 
to extend it to a space-time interval (Dx, Dt) between two events:
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Events 1 and 2 will 
have different 
coordinates for 
different observers O
and O’.
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Intervals between Two Events
By direct substitution, we have the following transform for intervals between 
two events:
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for differential changes

Note: One can show that the combination 22 2 2 222 2' ' 'ds dx dt dsc cdx dt 
is the same (invariant) for all inertial observation.


