
Numerical Notes
1. Keep u in units of c, e.g., 0.8u c since we always have the ratio u/c.  Then,  

2. Since the ratio u /c occurs so often, it has a special symbol:  

   2 221 1 0.8 1 1 0.8c c     can be calculated simply.

2and 1 1u c    

3. Approximation when u << c (low speed: non-relativistic):

Recall Binominal Expansion:

(1 ) 1n n    for  small.



Numerical Notes
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3. Approximation when u << c (low speed: non-relativistic):

If u /c is small,            will be really small !2 22u c

Problem: calculator might treat 2 21 2u c

Relativistic (u=0.3c) : 

simply as 1 and you will loose all 
significant figures if you combine
1 and            .2 22u c

2 2 22 0.3 2 0.045

1.24

u c


 



Non-Relativistic (u=0.003c) : 
2 2 22 0.03 2 0.0000045

1.0000045

u c


 

(quite diff. from 1) (not much diff. from 1)

Typically, if              , one should consider speed to be relativistic.0.1u c
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         
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(1 ) 1n n   



Example: Muon Life Time

earth

cosmic 
rays atom

muon Muon is an  unstable elementary particle with:
•e-charge
•207 Me

Produced by cosmic rays (mostly high energy protons) 
collide with atoms high up in the atmosphere (>4 km).

In a the rest frame of the muon, it has an average 
life-time of:

2.2muon s 

Without Einstein’s SR, if 0.99muonu c
8 6avg. dist. travelled = 0.99(3 10 / )(2.2 10 )

600

m s s

m

 




Example: Muon Life Time

earth

cosmic 
rays atom

muon

Muon is typically produced high up in the 
atmosphere ~ 4 to 13 km.

So, according to Galilean relativity, muon can’t 
reach the surface of the earth & we should not be 
able to detect them !

However, we do detect cosmic rays muons on the 
ground !

Einstein’s Relativity resolves this apparent paradox…



Example: Muon Life Time
Earth’s frame:

u=0.99c

Earth is stationary & 
muon move downward 
toward the ground

The two events (creation and decay) that 
define the life-time of a muon occurs in the 
rest frame of the muon so that the 2.2s life-
time is the proper time for an observer in 
muon’s rest frame: 0 2.2t s 

In contrast, in Earth’s frame, these two events do 
not occur at rest w/ Earth and the interval (t) 
defined by these two events will not be a proper
time interval as observed by someone in the 
Earth’s frame.  In fact, t will be dilated:

0
0 2 2 2

2.2
16

1 1 0.99

t s
t t s

u c

 
     

 



Example: Muon Life Time
Earth’s frame: So, according to an Earth’s observer, avg. dist. travelled by 

these cosmic rays muons will be,
816avg. dist. travelled = ( )(0.99)(3 10 / ) 4800s m s m  

So, some muons can reach the surface of the earth !

Muon’s frame: Muon is stationary & the Earth moves upward at 0.99c.

u=0.99c

In the Earth’s rest frame, the atmosphere is at rest 
with the Earth and its height (l0=4000m) is the 
proper length measured by an earth observer.



Example: Muon Life Time
Muon’s frame:

u=0.99c

But in muon’s viewpoint, the Earth is moving 
toward it at 0.99c and the height of the atmosphere 
will be length contracted in muon’s frame !

20 1 0.99 (4000 ) 560 600
l

l m m m


    

So, on average, some muons will be able to reach the 
surface of the Earth before it decays.



Lorentz Coordinate Transformation

( , , , ) ( ', ', ', ')x y z t x y z t

u in x-dir only.

Transforming the space-time coordinates from S to S’ correctly so that 
physical laws satisfying SR are invariant.



Lorentz Transformation
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Since O and O’ are in constant relative motion, the physical 
description and coordinate transformation between them should be 
symmetric !

with u -u



Lorentz Transformation (derivation)

Assume a modification of the Galilean Transformation by a still to be 
determined correction factor : 

( ' ')x x ut 

Since S and S’ are in relative motion, we should have a symmetric equation 
for x’ with u  -u,

' ( )x x ut 

Now, set both S and S’ to coincide with each other at the origin at t = t’= 0 
and a light pulse is initiated at that time.



Lorentz Transformation (derivation)

Substitute these into the previous equations, we have: 

in S
 is the s  in both frames!

' ' i
ame

n S'

x ct
c

x ct

 
 

( ' ') ( ) 'ct ct ut c u t    

' ( )ct ct ut 

Substitute t’ from the bottom equation to the top equation, we have: 
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(the desired  factor)

After a time t in S and a corresponding t’ in S’,
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Lorentz Transformation (derivation)
Now we try to get an eq for t in terms of x’ and t’ by eliminating the x
variable in the original two equations:

( ' ')x x ut ' ( )x x ut 
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Simplifying the expression with  ‘s on the RHS,
2
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Lorentz Transformation (derivation)
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More algebra…,
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(the desired Lorentz Transform in time)



Lorentz Transformation
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Lorentz Transformation
Reduction back to Galilean Transformation in the regime: u << c.

For
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(Galilean Transformation)

Einstein Relativity is more general and it reduces to previous results 
(Galilean) in the u << c limit.



Intervals between Two Events

We have defined Lorentz Transformation for an event P.  Now, we want 
to extend it to a space-time interval (x, t) between two events:

1
x

x

t

S

2

t

x’

t’

S’

1
2

x’
t’

Events 1 and 2 will 
have different 
coordinates for 
different observers O
and O’.

2 1 2 1

2 1 2 1

,

' ' ' , ' ' '

x x x t t t

x x x t t t

     
     

In general, '

'

x x and

t t

  
  



Intervals between Two Events
By direct substitution, we have the following transform for intervals between 
two events:
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for differential changes

Note: One can show that the combination 22 2 2 222 2' ' 'ds dx dt dsc cdx dt 
is the same (invariant) for all inertial observation.



Time Dilation (Revisit)

In S’-frame, consider two clicks (1 & 2) of a clock stationary in S’.

- these two events occur at the same place (x’1 = x’2, x’ = 0) but 
at different time (                         ).1 2' ' , ' 0t t t  

Now according to S-frame, 2 1 2
' '

u
t t t t x

c
       't
 

  
 

Since the two clicks occurs stationary in S’, t’ is the proper time, t0 = t’.

0t t  

So, the time interval measurement in S-frame is time dilated.



Simultaneity (Revisit)

In S’-frame, let consider two events 1 & 2 at two different
locations:                                 happening at the same time so that  

Then, in S-frame, these two events will be separated by the 
following time interval:

1 2' ' , ' 0x x x  

Thus, event 1 and 2 are not happening at the same time (not simultaneous) 
in S-frame !

' 0, ' 0x t   

2 1 't t t t    
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Length Contraction (Revisit)

Consider a ruler at rest in S’-frame (train) so that its length between the 
two end points is given by x’ = L0 (the proper length). 

How does the observer in S-frame measure the length of the moving ruler?

l was measured  by inferring the location of the right end of the ruler at the 
same time (at t=0) as the left end of the ruler.

left end (at t=0) right end (at t=0)



Length Contraction (Revisit)

0

'x x

L L


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An observer in S-frame “measures” the two ends of this ruler at the same 
time according to his/her own clock (t = 0).  

This is the length contraction formula.

In S–frame, the measured length of the ruler is (x = L) and it is an improper
length while x’ measured in S’-frame is proper.  So we have,

'x x u t      x 



Lorentz Velocity Transformation
In S- frame, let say that we have an object moving in the x-direction with 
speed,

x

dx
v

dt


Note: 
u relative speed 
between S and S’
vx speed of object

S S’

u


xv




Lorentz Velocity Transformation

Lorentz Transform gives: 
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Lorentz Velocity Transformation
In S’ - frame, the velocity of the object is defined as,

'
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

This then gives,
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(Lorentz Velocity Transformation)

Slow relative speed (u << c):
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Object moving at the speed of light:

21
x

c u
v

u
c

c


 



'xv c

(c is the same in all frames)

2

'
'

'
1

'

x

dx
u

dtv
u dx
c dt






 1

1

c u c
c

u c








Lorentz Velocity Transformation

If the object has velocity components in y and z directions: v’y & v’z, how 
would these components transform (u is in x direction only)?
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Similarly for the z-component !



Lorentz Velocity Transform
From the principle of relativity, there should be no physical distinction for 
the two inertial observers in relative motion.

So the Lorentz Velocity Transform equation and its inverse transform 
should have the same form but with u -u for the inverse transform of v
in term of v’.
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Example 37.7

a) What is the probe’s velocity 
relative to earth?

b) What is the scoutship’s 
velocity relative to spaceship?

Setup: Two frames: SEarth, S’ Spaceship, u = + 0.900c

a) In S’-frame, the probe moves at   ' 0.700xv probe c

2

' 0.700 0.900
0.982

1 ' 1 (0.700)(0.900)
x

x
x

v u c c
v c

uv c

 
  

 



Example 37.7

a)  The scoutship’s speed is given in S-frame (with respect to Earth), 

  0.950xv scout c 

2

0.950 0.900
' 0.345

1 1 (0.950)(0.900)
x

x
x

v u c c
v c

uv c

 
  

 

The scoutship’s speed with respect S’-frame is given by the inverse transform,



Relativistic Momentum & Energy
As we have seen, time intervals, length intervals, and velocity change 
according to the Lorentz Transformation depending on the observer’s 
frame of reference. 

( , ) ( ', ') Lorentz Transformationx t x t

Other dynamical quantities (such as momentum, energy, etc.) must also be 
appropriately expressed so that the laws of physics satisfy the following 
conditions:

• Satisfy the two postulates of Special Relativity:

• Laws of physics (e.g., conservation of momentum, conservation 
of energy, Newton’s laws) apply equally to all inertial observers.

• Speed of light in vacuum same for all inertial observers

• The modified relativistic dynamical quantities should reduce to the 
classical ones for u << c.



Relativistic Momentum & Energy
Relativistic Momentum:

2 21

m
m

v c
 



v
P v

 

Relativistic Energy:

2
2

2 21

mc
E mc

v c
 



Momentum of a particle moving with velocity      as measured in 
the lab frame (S-frame).

v


Total energy of a particle moving with velocity     as measured in 
lab frame (S-frame).

v




Relativistic Momentum & Energy
All laws of physics remain valid in all inertial reference frames means.

Conservation Laws for relativistic               must remain the same!& EP


 Experimentally, it has been shown repeatedly that it is (                            ) 
rather than their classical counterparts that are conserved in high energy 
collisions!

2andm mc v


 For v << c, 
2 2

1
1

1 v c
  


So, 

So that for non-relativistic speeds, relativistic     reduces to classical     .P


P


m m P v v
  



Relativistic Force

d

dt


P
F

 Newton’s 2nd Law: same form as in the classical 
case but with relativistic momentum   .

Note: If            (no external force), momentum     as expected will be 
conserved in both relativistic & classical regimes ! 

0F


P


Let use the relativistic force to consider the work-energy theorem:

f f

i i

dP
W F dx dx

dt
  

Work done by F to 
accelerate a relativistic 
particle from vi to vf

(for simplicity, F is in x-direction only)

P




Relativistic Work & Energy
f

i

dP dP
dx

dt dt
 v dt

f

i


f

i

W v dP 

Now, ( ) ( )d Pv vdP Pdv vdP d Pv Pdv    

Substituting this into the above equation for W: 

( )
f f f

i i i

W v dP d Pv P dv    
1st term 2nd term



Relativistic Work & Energy

1 term = ( ) ( )
f

f f i ii
st Pv mv v mv v  

For simplicity, choose 0 andi fv v v 

Then, the 1st term becomes: 
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Now, let consider the 2nd term,
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We can integrate this by a simple change of variable.



Relativistic Work & Energy
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Relativistic Work & Energy

Putting everything together, 
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 



Relativistic Work & Energy
Applying the work-energy theorem, this amount of work done to accelerate 
the particle from 0 to v should equal to the change in KE.

(Laws of physics should be unchanged in relativity !)

Since 0, 0

,
i i

f f

v KE

v v KE KE

 
 

Relativistic Kinetic Energy of a particle moving 
with     as measured in the lab frame. v
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2 21
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Relativistic KE  Classical KE

Slow moving particle regime               :v c

Using binomial theorem,
1/ 2 22 2 2 2

2 2 2 2

1 1
1 1 1

2 2

v v v v
O

c c c c

                                

Substituting this into the equation for Relativistic KE,

1/2 1/22 2
2 2 2

2 2
1 1 1

v v
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     

This is the classical 
result for v << c.
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