
Einstein’s Postulates for Special 
Relativity
1. All laws of physics must be the same in all inertial reference frames.

• Specific observations might be different but the same phenomena must 
be described by the same physical law.

• Not just the laws of mechanics (as in the Galilean viewpoint).  All laws 
of physics include mechanics, EM, thermodynamics, QM, etc.

SAME emf is 
induced in the coil !

magnet moves down coil moves up



Einstein’s Postulates
2. The speed of light c in vacuum is the same in all inertial reference frames 

and is independent of the observer or the source.

This is a revolutionary statement!

One of the immediate non-intuitive consequence  'c c u 

Together with #1, SR requires us to rethink how time and space are measured!



Stating the Results First

u
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flash  a’ flash b’

Time Dilation: (moving clock runs slow)
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Measured 
by S

Measured 
by S’

Length Contraction: (moving ruler get shorter)
0L L 

Simultaneity:

Two flashes 
simultaneous in S’ but 
not in S.



Notes on Relative Motion
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- Both observers in S and S’ have their own measurement devices and they 
can also measure his/her partners devices and compare with his/her own.

- Both S and S’ will respectively measure time dilations and length contractions 
from the moving clock and ruler from his/her partner.



Notes on Relative Motion
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- Although time and length measurement will depend on the observer’s inertial 
frame, they will agree on the following three items:

• c is the same in all frames
• all physical laws apply equally
• their relative speed u is the same



Relativity of Time Intervals

Measuring Time Intervals with a light “clock”:

One time unit is measured by the duration 
of two events: • laser light leaving (tic)

• laser light return (toc)

mirror

laser

Consider a boxcar moving with respect to the ground and we are 
interested in the measurement of an interval of time by both S and S’ 
from a clock placed in the boxcar.

u
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S’



Relativity of Time Intervals
In the S’ – frame: • Mavis O’ is moving with the boxcar

• the clock is stationary with Mavis O’

distance travelled by light = 2d
speed of light = c

According to Mavis O’,

0

2d
t

c
  (measured in S’)



Relativity of Time Intervals
Now, consider the observation from Stanley’s S – frame (stationary frame),

Note: speed of light is still c in this frame but Stanley will see it travels on a 
longer path!



Relativity of Time Intervals

then it must be longer than t0

From the given geometry, we can explicitly calculate t:
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2t l c  (light travels at the same 
speed c in S !) 
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Thus, if t is the time between 
the bounces of the laser light in 
S – frame



Time Dilation
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This is the time dilation formula in SR.

Since u is strictly less than c,

and 

2 21 1 1u c   

0t t   always !

(Note: both observers S and S’ will agree on this 
relationship between time intervals as long as they are 
both looking at the same clock in S’.)



Proper Time

0t t  

is called the proper time and it is a “special” (or “proper”) time interval 
since it is the time interval of the clock measured by an observer stationary
with respect to that clock, i.e., the two events (tic & toc) occur at the same
location.

0t

is the measurement of this same pair of tic-toc events by another 
observer in relative motion with respect to the clock.

t

All observers have his/her own proper time and all other observers 
measuring other observer’s clocks will not necessary be proper.

The proper time will always be the shortest time interval among all observers.



Notes on Subscript & Labeling 

0   and t t 

- proper time (time interval of the clock measured by an observer 
stationary with respect to that clock)

0t

 and 't t 

- time interval measured by observer St

- time interval measured by observer S’'t

- NOT proper time (time interval of the same clock above as measured 
by other observers not at rest with the clock)

t

 0in t t  np np

np

Both depending on whose clock (on boxcar or platform) we are 
measuring can either be                    .

't and t 
0 npt and t 



Unreality Check

2 22 ut l c  

If speed of light changes 
according to Galilean Velocity 
Transformation, then
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and,

Following the same calculation as previously, we have
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no time dilation: all 
inertial observers 
measure the same 
time interval



Relativity of Length

 Distance between two points on a rigid body P & Q can be measured by a 
light signal’s round-trip time.

P
Q

mirror

laser

l

l can be measured by the time interval: t2 – t1, 2 1 2 12 ( ) ( )
2

c
l c t t l t t    

As we have seen, t will be different for different inertial observers, l will 
also ! 



Proper Length
Similar to the concept of proper time which is the measured time 
interval of a clock which is at rest with the observer, proper length is 
the measured length of an object at rest with the observer.

0t

0l

u
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S’

In this case, Observer O’ in S’- frame will measure proper time and proper 
length for the clock and ruler shown. 



Length Contraction (parallel to u)
Let consider a ruler at rest in the moving frame (S’) and it lays parallel to the 
direction of the relative motion between S and S’ (as shown previously).

Within S’- frame, the ruler is at rest with Mavis.

The length of the ruler is measured using a light-clock by measuring the time 
interval between two events (light leaving the laser and light arrives back to the 
source).  In this measurement process, light pulse travels a distance of a total of 
2l0 within a time interval of  t0.



Length Contraction (parallel to u)
Since both measurement events are at rest (same location) within S’-frame, t0

is the proper time measurement and we have,
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Now, let consider the description according to Stanley in S-frame.

The ruler according to Stanley will have a length of l and let the time of 
travel for the light pulse from the source to the mirror be t1.

(note: Since Stanley is measuring these from afar and he is in relative motion 
with respect to Mavis, his measurement of t1 will NOT be proper.)

and      is the proper length of the ruler.0l



Length Contraction (parallel to u)

Within the time interval t1, the mirror will have moved a distance of u t1

Stanley has to take that into account in his measurement of the length l and 
his measurement of the distance that the laser light has to travel is,

1d l u t  
Since the speed of light is also c in Stanley frame, we can also write,

1d c t 



Length Contraction (parallel to u)
Combing these two equations and eliminating d, we have 
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Now, let consider the return trip of the laser light…

l

Let t2 be the time measured by Stanley for the light to travel back from the 
mirror back to the source.

Note that as the train moves forward, the source also moves forward to meet 
the laser light 



Length Contraction (parallel to u)
Combing these two equations by eliminating d, we have 
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Now, let consider the return trip of the laser light…

l

Let t2 be the time measured by Stanley for the light to travel back from the 
mirror back to the source.

Note that as the train moves forward, the source also moves forward to meet 
the laser light 



Length Contraction (parallel to u)

Analogous to the outgoing trip, the return trip of the laser light will be 
shortened by ut2 and 
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Length Contraction (parallel to u)
From the time dilation formula, we also have

0t t  

Combing these two equations for t, we have
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Recall: The two timing
events for the length 
measurement are at rest in 
S’-frame so that Mavis 
measure the proper time t0

and proper length l0. 

On the other hand, Stanley’s 
measurements (t and l) of 
the same two events are not 
proper.

Note: The proper length l0 is always the longest among all inertial observers.



Unreality Check

According to Galilean Velocity Transformation, in S-frame, we have

On the out going trip, 1c c u  so that 1
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Now, the total time for the whole trip is now, 
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(all clocks clicks at the same rate)



Relativity of Simultaneity

Simultaneity

flash a flash b

Definition: Two flashes (event a and b) are considered to be simultaneous 
with respect to observer O if light from a & b (equal distance to observer 
O in the middle) arrive at the observer at the same time.

O



Relativity of Simultaneity

At time t = 0: 

O’ and O are respectively in the 
middle of A-B and A’-B’.

We will analyze the situation in Stanley’s S-frame in the following slides.



Relativity of Simultaneity
On the ground (S-frame) after some time t,

Light travels at the same speed c in both frames.



Relativity of Simultaneity

Then, a bit later, when Stanley see the 
lights from A and B reach him 
simultaneously, Mavis in S’- frame 
still waiting for the light from the 
lighting strike at the rear of the train 
to reach her.

According to Mavis, the lighting strikes at A’ and B’ did not 
occur simultaneously.  Stanley agrees with Mavis’ observation.

On the ground (S-frame) after some more time t,



Unreality Check
In the (incorrect) Galilean view, according to Stanley, cA’ and cB’ inside the 
train will be modified according to their relative speed u.
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Speed of light from A’ and B’ will be modified 
by the box car’s speed u.

So that light signals from A’ will speed up and signal from B’ will slow 
down in Stanley’s viewpoint.

This changes in speed for c will result in signals from A’ and B’ to arrive at 
O’ at the same time so that Stanley will say that both Marvis and himself 
agree that the lighting strikes simultaneously.



Sequence of Events according to 
Mavis (S’- frame) [box car stationary]
At t’ = 0, lightning strikes on B and B’:

Some time later, lightning strikes on A and A’:

A’ B’

O’

OA B

u

A’ B’

O’

O B

u

A

Note: 
1.platform is length 

contracted and the box 
car’s rest length is longer.

2.Speed of light is the same 
in both frame according 
to O’.



Sequence of Events according to 
Mavis (S’- frame)

Some time later, the light pulses reach O’

A’ B’

O’

O B

u

A



Sequence of Events according to 
Mavis (S’- frame)

A’ B’

O’

OA B

u

Some more time later, the light pulses reach O at the same time but light 
pulse from A’ still has not reach O’ yet.

Mavis see the flashes at different time but agrees with Stanley that the 
light signals in Stanley’s frame arrive at him at the same time.  Both see 
the same sequence of events but the notion of simultaneity is relative.



Ladder | Barn Paradox
Pictures from wikipedia

Barn’s
Frame

Ladder’s
Frame



Relative Speed of a Spaceship
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