
Intensity in Single-Slit Pattern
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Divide the wave front at the slit into N (large #) 
smaller strips/wavelets.
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If E0 is the magnitude of the incoming wave, 
then the E-field from each wavelet will have a 
magnitude of 
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to observation 
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Intensity in Single-Slit Pattern 
(Phasors)
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Consider the electric field from each wavelet as a 
phasor      , the resultant electric field Ep at p can 
be calculated as the phasor sum of all the        .     ' sE
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



Intensity in Single-Slit Pattern 
(Phasors)
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For each pair of adjacent phasors, there is 
a path difference

2 2
sin

2

l
l y

   
   
 

      

and this path difference induces a phase 
difference  between adjacent phasors.
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Phase Difference from Path Difference

Considering the phasor sum of all N phasors, the total
phase difference  is,
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Note, the total phase difference 
 is again a function of the 
angular location .

NOTE: Similar to earlier,  has to be in radian!
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Summing Phasors to Calculate Ep

Central Maximum (= 0,  = 0, straight ahead):

0PE N E E  

All phasors are in phase.



Summing Phasors to Calculate Ep

First Order Minimum ():

0PE 

1st minimum condition when last 
phasor’s tip matches up exactly
with the first phasor’s end.

Note: 2
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same condition as previously derived.
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Summing Phasors to Calculate Ep

0PE E

Slightly away from Central Maximum ( 0, 0) :   

 is the phase diff. between 
the first and the last phasors.
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http://demonstrations.wolfram.com/RepresentationOfDiffractionByVectorSummation/



Intensity in Single-Slit Pattern

For ,N y dy   we can find an expression of the intensity I in terms of .

The polygon becomes 

an arc of a circle.
• C is the center of the arc
• angle A and B are right angles
• interior angle at D is 180o - 

D
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For the circular section ACB,
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Intensity in Single-Slit Pattern

Lastly, from the blue right triangle,
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Intensity in Single-Slit Pattern

Then, lastly with                      , the intensity of the pattern as a function of  is,
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Locating Mins & Maxs
Minimum:

requires that
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Note that / 2 = 0 (m = 0) is not a solution for a minimum !
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previously derived !

sina m 

0



Locating Mins & Maxs
Maximum:
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For single-slit Fraunhofer diffraction patterns, maximum occur near

but not exactly !

To find the maximum exactly, we need to find the extremum for the 
intensity function, i.e.,
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Locating Mins & Maxs
There are two solutions:

sin
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(same minimum condition)
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intercepts are solutions 
to tan x = x.
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of the maximum of the 
intensity function.sin
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Width of the Single-Slit Pattern

One can estimate the width of central max 
using the locations of 1st min on both left 
and right sides of the central max:

1sin
a

  



Width of the Single-Slit Pattern

One can estimate the width of central max 
using the locations of 1st min on both left 
and right sides of the central max:

1sin
a

  

a = 
1st min at1st min at

If a = , where is the 1st diffraction minimum?

9090 

So, if          , only one broad maximum is visible !a 



Width of the Single-Slit Pattern

One can estimate the width of central max 
using the locations of 1st min on both left 
and right sides of the central max:

1sin
a

  

 and as a
a

  

1st min moves closer (peak sharper)!
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Resolving Power for Circular 
Apertures

Because of diffraction, light spreads out after passing thru circular 
apertures  this imposes resolution limits to commonly used optical 
instruments, such as microscopes and telescopes.  

image will not be sharp



Resolving Power for Circular 
Apertures

Consider two non-coherent point sources (so that they don’t interfere), i.e. two 
distant stars,

We will observe 
two diffraction 
patterns on top 
of each others.lens

from telescope

star 1

star 2

angular separation 
between the two stars



Resolving Power for Circular 
Apertures

The overlap of the two diffraction pattern might prevent one from discerning 
the two sources of light.

A workable criterion is called the Rayleigh’s Criterion which is similar in 
spirit to our discussion for the resolving power for the diffraction grating:

The two diffraction pattern can be resolvable if the 
central max from one pattern is at least as far as the 
1st min of the other image.

For circular aperture with diameter D, the angular location of the its 1st order 
diffraction minimum is:

1sin 1.22
D

  (“1.22” is a geometric factor)



Resolving Power for Circular 
Apertures

The Limit of Resolution for a circular aperture is defined as the smallest 
angular separation between two light sources that can be resolved according 
to the Rayleigh’s Criterion and it is given by: 

minsin 1.22
D

 

lens
from telescope

star 1

star 2

min



Resolving Power for Circular 
Apertures

An optical device such as a telescope or microscope will have a high Resolving 
Power if it has a small Limit of Resolution (       small) so that nearby objects 
with a small angular separation can be resolved.

This gives the following ways to increase the Resolving Power:

• increase the diameter D  use a bigger len/mirror in telescope
• decrease the wavelength  use a shorter wavelength of light in 
chip production

min



Example 36.6: Resolving Power of a 
Camera Lens

Given:
f=50 mm
f-number of f/2
object distance 9.0m
wavelength = 500nm

What is the minimum distance between 
two points on the faraway object that one 
can resolve?

f-number = f/D   D = f/f-number = 50mm/2 =25 mm

Rayleigh’s Criterion gives: 
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Example 36.6: Resolving Power of a 
Camera Lens

For a simple lens, we know that the angular separation of two points on the 
object is given by,

'

'

y y

s s
  

y separation of object points
y’ separation of the corresponding image points
s object distance
s’ image distance

y y’

s

s’





Example 36.6: Resolving Power of a 
Camera Lens

Applying the minimum condition, we have, 

5 5 02.4 10 9.0 (2.4 10 ) .22
y

rad y m rad m
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On the camera film, the image separation will be approximately,
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s’~ f  if image is focused on the film

(on object)

(on film)



Double-Slit Interference Pattern
(w/o diffraction)
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Constructive Interference:

1
sin ( 0, 1, 2, )

2
d m m       

 


Destructive Interference:



Double-Slit Interference Pattern
(w/o diffraction)
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Intensity of Two-Slits Diffraction 
Patterns

With two slits, we have diffraction from the individual slits and interference
from the two slits.

S2

S1



Intensity of Two-Slits Diffraction 
Patterns

With two slits, we have diffraction from the individual slits and interference
from the two slits.

The combined intensity is the superposition of the two effects:
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d separation bet. slits
a width of both slits



Intensity of Two-Slits Diffraction 
Patterns
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Ddouble slit

d = 4a
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Intensity of Two-Slits Diffraction 
Patterns
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d = 4a

sind m Interfer max:

diff min: sin ' 'a m 

When do they match?
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m d
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Interference Patterns from Multiple Slits

Let consider an example with 
N=8 slits,

On the screen at P, maximum will occur at:

sin , 0, 1, 2,d m m     

• when waves from adjacent slits have a 
path difference which is exactly m.

• This condition for maximums is the same 
for the two-slits patterns.



Interference Patterns from Multiple Slits
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Interference Patterns from Two Slits







Central max

1st order max

1st order min

For N = 2, there is a single minimum 
exactly ½ way between 0 and 2:

2 2
at

2 N

    



Interference Patterns from Several Slits

Now, let look at the condition for the minima when  goes from 0 to 2for N=8:

For N = 8, there are a total of 7 minima with
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4 4
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N
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1 loop

2 loop

4 loop


