
Interference in Thin Films

Color fringes observed from an oil slick on water or on a soap bubble are 
the white-light interference patterns produced by the reflected light off a 
thin film of oil or soap.



Phase Shifts During Reflection
From Maxwell’s Equations, one can show that the reflected wave will suffer 
a 180o or /2 phase shift if it is reflected off from a medium with a larger n.
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Interference from a Thin Air Gap

Assumptions:
• Thickness of air gap t is small
• Thickness of glass is large
• Incident light is nearly normal at 

the upper plate.
t air

glass

glass
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Dair gap

wave #1: reflected from top interface of air gap:

no phase shiftglass airn n 

wave #2: reflected from bottom interface of air gap:
o  (or ) phase shif18 t0air glassn n  

Interference due to this small gap



Interference from a Thin Air Gap
Now, consider the conditions for interference:

Constructive: wave #1 and wave #2 upon reflection must have a net phase 
difference of multiples of 2, i.e., 

(2 ), 0,1,2,m m  

• wave #1: suffers no phase shift during reflection
• wave #2: acquires a  (180o) phase shift during reflection and it also 

gains additional phase shift due to path difference = 2t in the air gap. 
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Interference from a Thin Air Gap

1
2 , 0,1, 2,

2
t m m    

 


(condition for Con. Int. from 
thin film where one of the 
waves suffers a phase shift)

Destructive: wave #1 and wave #2 upon reflection must have a net phase 
difference of 
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Again, the net phase diff accumulated between wave #1 and #2 =
2
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Rewriting, 



Interference from a Thin Air Gap

2 , 0,1,2,t m m  
(condition for Des. Int. from 
thin film where one of the 
waves suffers a phase shift)

Rearranging the equation, we have,
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Finally, we have



Thin File Interference Demo

https://youtu.be/s8vLq2HsrHM



Thin and Thick Films

Interference effects can be observed Interference effects are difficult to 
observe



Another Thin Film Example (non-
refractive coating on lens)

t coating

glass

air
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air coating glassn n n 

wave #1: reflected from top interface of the coating:

wave #2: reflected from bottom interface of the coating:
o  (or ) ph1 as8 e sh0 iftcoating glassn n  

o  (o1 r )80  phase shiftair coatingn n  



Interference from a Thin Film
Since both wave #1 and #2 suffers the same phase shift upon reflection, the net
phase difference will be from the path difference (2t) only.  So, we have the 
standard condition (net phase diff. due to path diff. only),
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There is one more consideration: the path difference is accumulated in a 
medium with ncoating so that the relevant wavelength should be n = /ncoating.

Destructive: 1
2 , 0,1, 2,

2

1
2 , 0,1,2,

2coati

n

ng

t m m

n t m m





    
 

    
 





Note: In addition to 
wavelength modification, 
the RHS dependence are 
switched with respect to 
the air gap case.



Example 35.4: Thin Film

Question: 
a. Will there be a bright or dark fringe close to the point of contact?
b. What is the distance x to the next bright fringe?



Example 35.4
Since andplastic silicone silicone glassn n n n 

Both wave #1 and #2 suffer a 
phase shift. 

So, close to the point of contact 
( ), the reflected wave #1 
and #2 will arrive at the eyes in 
phase (bright fringe).

To find the location of the next constructive interference, we use,

02 ( 1)siliconen t m 

0t 



Example 35.4

From the two similar triangles, we have
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Newton’s Rings

When viewed in monochromic light, the interference pattern is a set of 
concentric rings called the Newton’s rings.  

Since each fringe corresponds to a path difference ~ , the lack of 
symmetry of these rings can be used to check for precision in lens 
making extremely accurately.



Michelson Interferometer

Distances comparable to  can be measured with ease using this device by 
counting fringes.

C and D are cut 
from the same 
piece of glass so 
that Ray 1 & 2 will 
go thru the same 
thickness of glass.



Michelson-Morley Experiment

Albert Michelson and Edward Morley set out to measure the property of the 
either and ended up showing that there is no ether.

In the 1880s (before our full understanding of electromagnetic theory and special 
relativity), scientists believe that light travels in a medium called ether (similar 
to sound waves travel in air and water waves travel in water).

Similar to a boat (light) traveling in a flowing river (“ether”), the speed of light 
was expected to depends on its relative motion with respect to the ether.

u

v-u

v+u



Michelson-Morley Experiment

ether wind direction

Expectation:
• The ether wind will 

affect the horizontal 
and vertical branch of 
the device differently

• The resulting 
interference fringes 
depend on the path 
difference between the 
two branches

Result: No observable difference implies there is no ether!

• Different pattern will 
result if device is 
rotated 90 degrees
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Chapter 36: Diffraction
 Diffraction and Huygens’ 

Principle

 Diffraction from a Single 
Slit

 Intensity in the Single-Slit 
Pattern

 Double-Slit Diffraction

 Diffraction Grating

 x-Ray Diffraction

 Resolving Power



Wave Nature of Light: Diffraction & 
Interference from Two Slits

S2

S1

S2

S1

Light propagates as rays Light propagates as waves



Wave Nature of Light: Diffraction of a 
Single Slit

Light propagates as rays Light propagates as waves

S1S1



Diffraction from Sharp Edges



Diffraction from Sharp Edges

This is what actually happens in real experiments.

Interference fringes seen beyond geometric shadow



Diffraction and Huygen’s Principle

Slit is divided into a series 
of  strips (wavelets)

The spreading out of waves thru 
small apertures or by sharp 
edges is called diffraction.

Consider a simpler case: a single slit

Drazors gap

Waves spread out from each 
points along the slit as wavelets 
creating interference patterns 
beyond and around sharp edges.

Similar to the two-source 
interference pattern, these 
wavelets interfere as they 
spread out and create the 
diffraction pattern.



Diffraction from Narrow Slit

https://youtu.be/JcjDO5VMTiI



Single-Slit Diffraction

Central Maximum (= 0, straight ahead)

All waves from top half of slit travel 
the same distance to the screen as 
waves from bottom half. They arrive 
in phase at the central mid-point 
constructive interference.

There will be a bright fringe in the 
middle at .



Central Maximum: Poisson’s Spot

obstacle 
(ball bearing) screen

Wave spreading around from the top 
will travel the same distance as the 
wave spreading around from the 
bottom.

At the mid-point ( = 0), these 
waves will interfere constructively
and create a bright spot although it 
is in the shadow region.



The Poisson’s Bright Spot



Fresnel & Fraunhofer Diffraction

For simplicity, we will consider Fraunhofer Diffraction from now on.



Single-Slit Diffraction: Dark Fringes

First Order Minimum: ( > 0  slightly above (or below) the central max)

a/2

a/2


Divide the wavelets into 2 groups 
(top and bottom)

If wavelets from the top group 
destructively interfere with wavelets 
from the bottom group, we will 
have a dark spot on the screen at .
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Single-Slit Diffraction: Dark Fringes
Second Order Minimum

a/4

a/4



Consider the following arrangement with 
slightly larger: 

Divide the wavelets into 4 groups

If wavelets from each adjacent groups  
destructively interfere, we will have 
another dark spot on the screen at .
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Single-Slit Diffraction: Dark Fringes

For higher order minimum with larger angular distance , 
we can use the same argument by subdividing the slit into 
more groups (6, 8, 10, etc.).

This leads to the following general formula for the dark 
fringes:

sin , 1, 2,a m m     

Note:
1. m = 0 is not the first minimum !

In fact, it is the location for the central max.
2. Secondary maximum occurs near 3/2, 5/2, 

etc. but not exactly.


