
Example: Compound Lenses



Example: Component Lens
For the 1st Lens:
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This image from the 1st lens is on the light incoming side of lens #2, so that:
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The combined lateral magnification is the product from both lenses,
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(final image is 12 cm on the outgoing side of lens #2)

(upright and real)



Another Example of Component Lens

Two converging lens with                                       and the lens are 20 cm apart.1 220 and 10f cm f cm 

Object is located 30cm to the left of lens #1, find the location of final image.
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Another Example of Component Lens

For the 1st Lens:
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This image from the 1st lens is on the outgoing side of lens #2, so that:
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(final image is 8 cm on the outgoing side of lens #2)

(inverted and real)



Fresnel Lens

Fresnel Lens for the lighthouse at Jones 
Point in Old Town Alexandria

Use in headlights and lighthouse 
lamps to save weight. Dfresnel lens



The Eye

For an object to be seen clearly…

The lens must adjust its radius of curvature using its ciliary muscle 

to change the curvature of the lens so as to form the image sharply 

on the retina.

retinalens 

object
image

ciliary
muscle



The Eye

Normal (ciliary muscle is relaxed) 

Parallel rays from infinity will form a sharp image on 

the retina.

Accommodation (ciliary muscle contracts): rays are not coming in parallel from infinity 

R and f of lens will need to change to accommodate so 
that rays from close-by object will again form a sharp 
image on the retina.  



Angular Size of an Object

 The perceived size of an object depends on its actual image size on the retina: 

- Both the blue (bigger) the green (smaller) arrows will be perceived to have 
the same angular size

'

- Moving the blue arrow closer to the eye will result in a bigger image on the 
retina and thus a bigger perceived angular size

The perceived angular size of an object is determined by the angle 
subtended by the image on the retina 

retinalens 



Angular Magnification

'

Thus, an object can appear to be magnified if it moves closer to the eye and 

the Angular Magnification M is defined as the ratio:
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M


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Note: The largest angular magnification is achieved at 

the closest distance from the eye (the near point) where 

the lens can still form a sharp image at the retina.

~ 25 cm 
(for healthy 
young adult)
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Magnifier
Putting the object      near the focal length of a magnifier forms a large 

virtual image      with a larger angular size            for the eye.' 

'

f

magnifier

y

virtual image 
of object



 y

25cm

Angular Magnification of a Magnifier
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Compound Microscope



Magnification of a Compound Microscope

Angular Magnification of a Compound Microscope:
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Fermat’s Principle
Pierre de Fermat (1601-1665)
A general mathematical principle that can be used to analyze light path:

“When a light ray travels between two points, its path is the one that 
requires the least time.”

Application #1: uniform material [n (or v) is the same everywhere!]

Between any two points, the least time requires the 
shortest distance in an uniform medium.

Light will travel in a straight line in an uniform medium.
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Fermat’s Principle
Pierre de Fermat (1601-1665)

Application #2: Snell’s Law
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Note: With two different speeds, 
the fastest way to get from p to q
is not necessary a straight line !

Within n1 and n2, light travels 
in straight lines and total time 
of travel from p to q is,
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Fermat’s Principle
(Application to Snell’s Law)

Find the value of x (the crossing point) such that the total travel time is 
minimized.
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Fermat’s Principle
(Application to Snell’s Law)

(Snell’s Law)
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Chapter 35: Interference
 Interference and 

Coherent Sources
 Two-Source 

Interference of Light
 Intensity of 

Interference Patterns
 Interference in Thin 

Films
 The Michelson 

Interferometer



Wave Nature of Light
 Previous Chapters (Geometric Optics)  << L

 Rays Model is an approximation of EM waves with rays pointing in 
the direction of propagation

 Next Couple of Chapters (Wave/Physical Optics)  ~ L

 Like water waves, light spreads and interferes with each other.

 Observed phenomena cannot be accounted for by rays:

Diffraction Interference

spreading

constructive/
destructive 
interference 
patterns



Wave Nature of Light: Diffraction & 
Interference

S2

S1

Light propagates as rays

S2

S1

Light propagates as waves



Huygens’ Principle
Christiaan Huygens (1629-195): The Huygens’ Principle can be used to predict 
the spreading of light wave.  It is a geometrical construction using every point 
on a wave front as the source of secondary wavelets that spread out in all 
directions with a speed equal to the speed of propagation of the wave.



Interference and Superposition
 Interference refers to a situation in which two or 

more waves overlap in space.

 The resultant displacement at any point is 
governed by the principle of superposition.

“the resultant disturbance at any point and at any 
instant is found by adding the instantaneous 
disturbance that would be produced at the point by 
the individual waves as if each waves was present 
alone.”



Superposition and Interference
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Constructive Interference (+ peaks aligns w/ + peaks)

Destructive Interference (+ peaks aligns w/ - peaks: /2 apart)
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http://iwant2study.org/ospsg/index.php/interactive-resources/physics/04-waves/01-superposition/384-
wave1d01



Conditions for Observable Sustained 
Interference
1. The sources have to be coherent

Coherent means that…
 The individual waves must maintain a constant 

phase relationship (oscillate in unison) with each 
other.
- e.g. two speakers driven by the same amplifier
- two regular light bulbs don’t interfere since they are not 
coherent. (Emission from a light bulb is from a thermal
process of random motions of charged particles in the 
filament.)



Conditions for Observable Sustained 
Interference
2. The waves need to have the same polarization.
3. Two or more interfering waves must have the same 

wavelength (monochromatic) 

 You can have white light interference pattern (if the 
source is coherent) but the effect will appear for 
different colors corresponding to the diff. 
interference patterns for diff.in the white light.



Superposition and Interference
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http://iwant2study.org/ospsg/index.php/interactive-resources/physics/04-waves/01-superposition/384-
wave1d01



Interference and Path Difference

Dtwo sheets

(a) Point a is symmetric with respect to the two coherent 
sources. Waves will arrive in phase constructively: r2 - r1 = 0.
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: distance to S

: distance to S
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r r  path difference
2 1
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r r m
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2 1

1

2

( 0, 1, 2, )

r r m

m

    
 

   

Constructive Inter. Destructive Inter.



Young’s Double Slit Experiment

Spreading of light behind slits
Recall Huygen’s Principle

D2 slits



Double Slit Interference Demo

https://youtu.be/J-v7F4LWDvU



Young’s Double Slit Experiment



Young’s Double Slit Experiment

If screen is far away so that R >> d, we can assume rays from S1 and S2 to be 
approximately parallel and the red triangle becomes a right-triangle.

Then, from the simplified geometry (right panel), we have an explicit expression 
for the path difference:

2 1 sinr r d    is the angular location of 
observation point P on the screen.)



Young’s Double Slit Experiment

If screen is far away so that R >> d, we 
can assume rays from S1 and S2 to be 
approximately parallel and the small red 
triangle becomes a right-triangle.

Then, from the simplified geometry (right 
panel), we have an explicit expression for the 
path difference:

2 1 sinr r d  

 is the angular location of 
observation point P on the screen.)

1r

2r

1S

2S

2 1 sinl r r d    

R



Constructive/Destructive Two-Slit 
Interference

Applying the conditions for constructive/ 
destructive interference, we have the following 
conditions:

sin ( 0, 1, 2, )d m m     

Constructive Interference: Two Slit Interference

1
sin ( 0, 1, 2, )

2
d m m       

 


Destructive Interference: Two Slit Interference

• The bright/dark bands in the pattern are called fringes
• m is the order of the fringes



Locating Fringes

d

P

R

m

In normal situations,
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 


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(400-700 nm)

So, typically, we have the condition that d << R so that  is small.

Thus, we can approximate                               (    needs to be in radian ! ) sin tan   

ym

The linear distance to a particular ordered fringe (ym) is given by:  tanm my R 

With the small angles approximation, we have:  

tan sinm m m

m
y R R R

d

   





Example 35.1

Determine the wavelength of the light from location of y3.

   
3

3 73
3

3 9.49 10
0.2 10 6.33 10 633

3 3 1.00

y m
y R d m m nm

d R m

 


 
       



Intensity of Interference Patterns
Wish to find           on a screen far away … I 



Let consider the E fields coming from the double slits:

S2

S1

1( ) cos( )E t E t

2( ) cos( )E t E t  

2 1r r
E field from S2 has a phase lag  due 
to the extra path difference, r2 - r1.



Phasor in Action

- E field as a vector (phasor)  rotating in 
the x-y plane with an angular frequency .

- The time variation of this E field, E(t) is 
given as the horizontal projection (light 
red) of the phasor (dark red).

Copyright George Watson, Univ. of Delaware, 1997

( ) cos( )oE t E t

tim
e

E
(t)



Intensity of Interference Patterns
Phasor Representation of an E Field:

( ) cos( )oE t E t

- E field as a vector (phasor)      rotating in the x-y plane with an angular 
frequency .

- The time variation of this E field, E(t) is given as the horizontal projection 
(light red) of the phasor      (dark red).

E


E


E
o

t
E(t)

E(t)

E


phasor

t



Intensity of Interference Patterns

Recall that there are two coherent E fields with a slight phase difference 
coming from the double slits:

S2

S1

1( ) cos( )E t E t

2 ( ) cos( )E t E t  

2 1r r
E field from S2 has a phase lag  due to 
the extra path difference, r2 - r1.



Intensity of Interference Patterns
At a given point on the screen 
far away from the two slits, 
the total E-field at P, EP, is 
given by the vector-sum of 
the two phasors               .1 2andE E

 

To find the magnitude of the 
resultant phasor      , EP, we 
use the law of cosines.

PE


2 2 2 22 cos( )PE E E E     
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Intensity of Interference Patterns

Using the symmetry of the cosine function,

2 2 2 2

2 2 2

2 2

2 cos( )

2 2 cos
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P
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E E E
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we have,

cos( ) cos    

2 2 24 cos
2PE E
   
 

Using another trig identity,  21 cos 2cos 2  

we have,                             . 2 cos
2PE E
   
 

This gives,                             .



We can write the expression as,                         

Intensity of Interference Patterns

2
0 cos

2
I I

   
 

The intensity of an electromagnetic wave is given by the time 
average magnitude of the Poynting vector, Sav.                        

In general, the Poynting vector is proportional to the square of the 
magnitude of the electric field so for the intensity at P (eq 32.29),                        

Note: when the two waves are in phase ( = 0, straight ahead), the resultant 
intensity is at maximum (I=I0) and when the two waves are exactly half-cycle 
out of phase ( = ), the resultant intensity is identically zero. 

where I0 is the maximum intensity when  = 0. 



Phase Difference relates to Path Difference 

Here, we have the lighter cyan wave slightly ahead of the blue wave.

 

 

 

 



(a complete cycle measured in wavelength)

(a complete cycle measured in phase)



r2 – r1 (path difference measured in length)

(phase difference measured in radians)

This gives the relation, 2 1

2

r r
 


    2 1 2 1

2
r r k r r




   

where k = 2 is called the wave number.



Phase Difference depends on Path 
Difference

From our geometry, we have the 
following picture for the path 
difference:

2 1 sinr r d  

 is the angular position of the 
observation point PSubstituting this into to our 

previous equation, we have:
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2 2
sin

d
r r

  
 

  

NOTE: We expressed one full cycle as 2 so that has to be in radian!



Intensity in Two-Slit Interference
Putting the expression for the phase difference into our intensity 
equation for a two-slit interference pattern, we then have,
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Intensity in Two-Slit Interference

From the intensity equation, we can re-derive the conditions for 
the bright (maximum) and dark (minimum) fringes:

2
0 sincosI I

d 


   
 

Maximum occurs when: sin ( 0, 1, )sin m d
d

m m
   

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Minimum occurs when: 1 1
( ) sin ( ) ( 0, 1, )s

2 2
in m d m m

d    

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Interference in Thin Films

Color fringes observed from an oil slick on water or on a soap bubble are 
the white-light interference patterns produced by the reflected light off a 
thin film of oil or soap.


