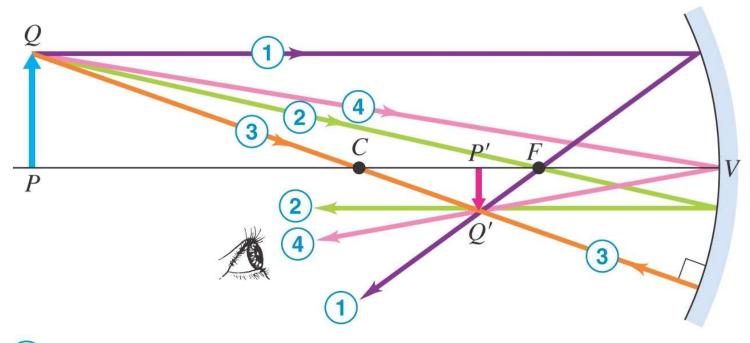
Geometric Methods: Rays Tracing

Principal rays for concave mirror



- **1** Ray parallel to axis reflects through focal point.
- 2 Ray through focal point reflects parallel to axis.
- (3) Ray through center of curvature intersects the surface normally and reflects along its original path.

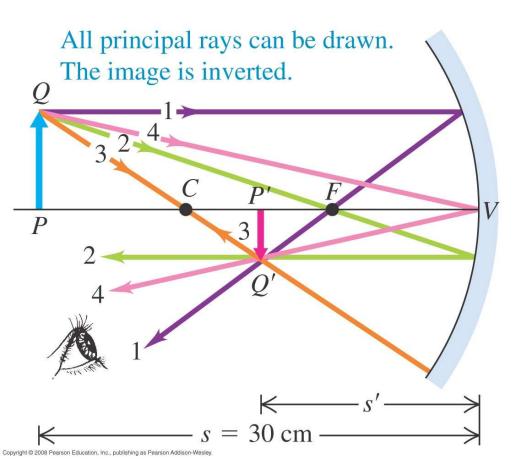
4) Ray to vertex reflects symmetrically around optic axis.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Example 34.4: Concave Mirror

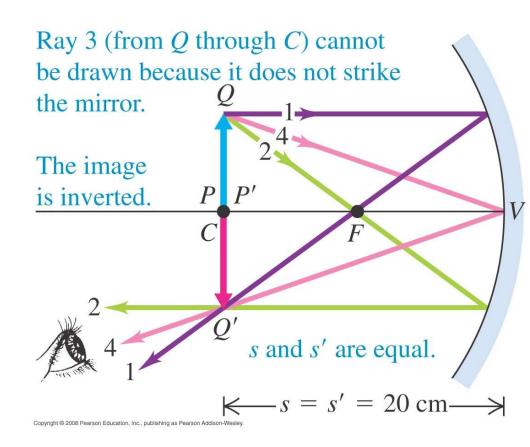
P > C > F

(a) Construction for s = 30 cm



P = C

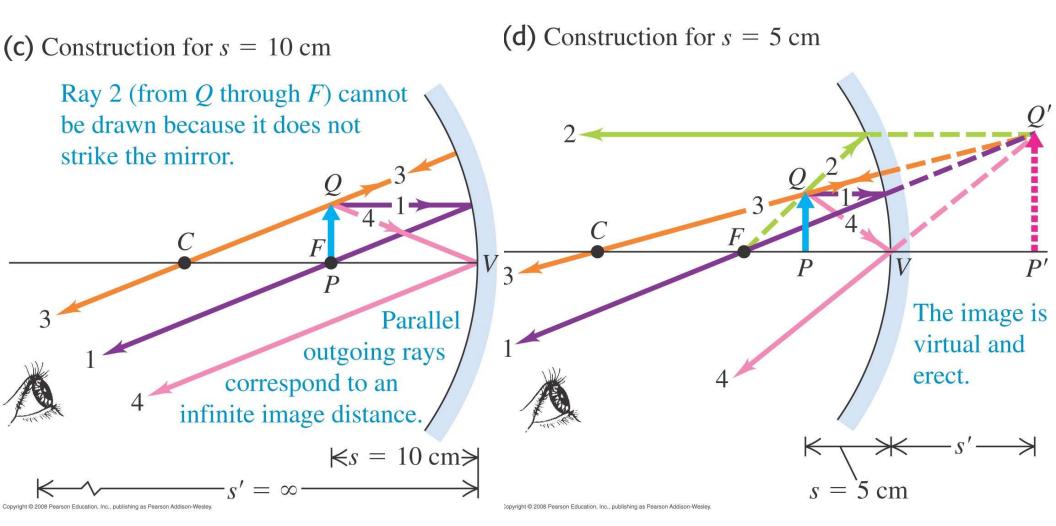
(b) Construction for s = 20 cm



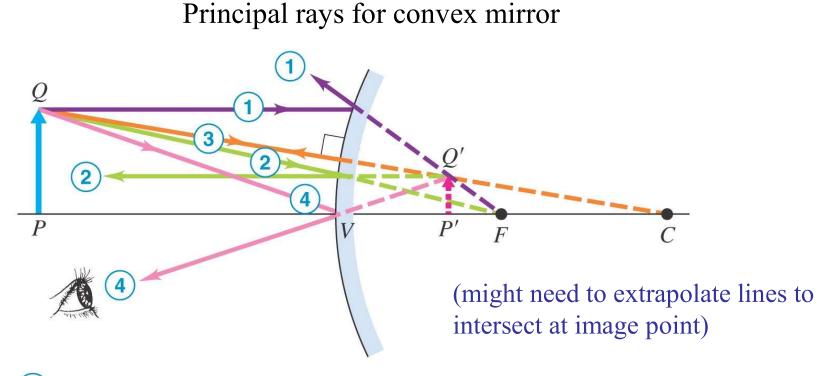
Example 34.4: Concave Mirror

P = F

P < F < C



Geometric Methods: Rays Tracing



- (1) Reflected parallel ray appears to come from focal point.
- (2) Ray toward focal point reflects parallel to axis.
- (3) As with concave mirror: Ray radial to center of curvature intersects the surface normally and reflects along its original path.
- (4) As with concave mirror: Ray to vertex reflects symmetrically around optic axis.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley

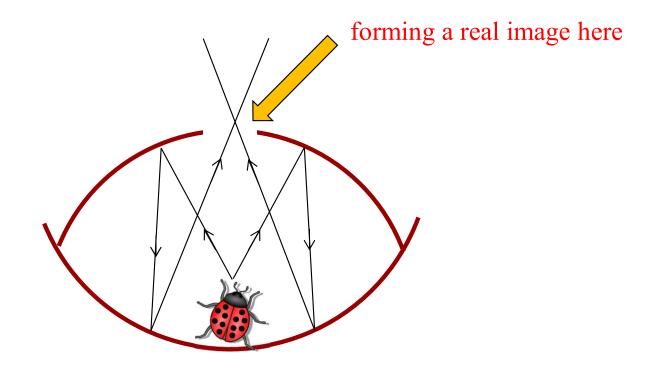
Example 34.4: Concave Mirror

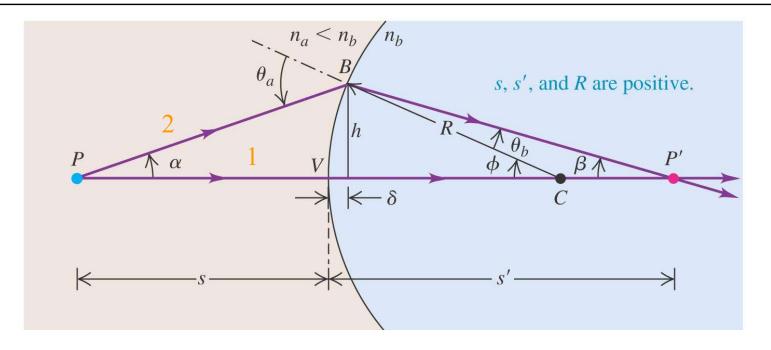
Mirrors & Thin Lens Applet (by Fu-Kwun Hwang)

http://www.physics.metu.edu.tr/~bucurgat/ntnujava/Lens/lens_e.html

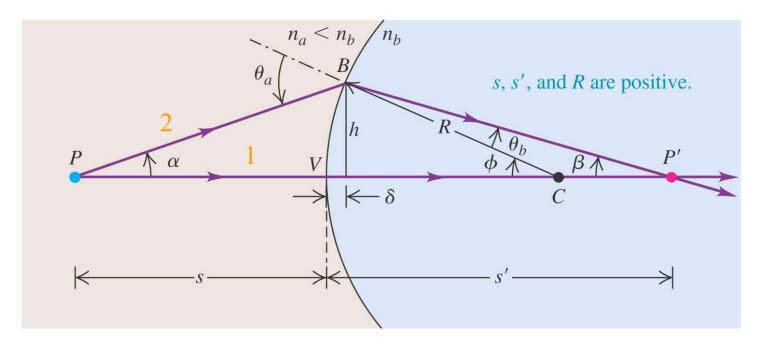
This applet is for both mirrors and thin lens. Use the drop down menu to choose.

Demo with Two Circular Mirrors





- Ray 1 from *P* going through *V* (normal to the interface) will not suffer any deflection.
- Ray 2 from P going toward B will be refracted into n_b according to Snell's law.
- Image will form at *P*' where these two rays converge.



At *B*, Snell's law gives,

$$n_a \sin \theta_a = n_b \sin \theta_b$$

From trigonometry, we also have,

From $\triangle PBC$, $\theta_a = \alpha + \phi$ From $\triangle P'BC$, $\phi = \beta + \theta_b$ $\rightarrow \theta_b = \phi - \beta$ $\tan \alpha = \frac{h}{s + \delta}$ $\tan \beta = \frac{h}{s' - \delta}$

Again, consider only paraxial rays so that the incident angles are small, we can use the small angle approximations: $\sin \theta \sim \tan \theta \sim \theta$.

With this, Snell's law becomes: $n_a \theta_a = n_b \theta_b$

Substituting θ_a and θ_b from previous slide, we have,

$$n_{a}(\alpha + \phi) = n_{b}(\phi - \beta)$$

$$n_{a}\alpha + n_{a}\phi = n_{b}\phi - n_{b}\beta$$

$$n_{a}\alpha + n_{b}\beta = (n_{b} - n_{a})\phi$$

With the small angle approximations, the trig relations reduce to,

$$\alpha \simeq \tan \alpha = \frac{h}{s}$$
 $\beta \simeq \tan \beta = \frac{h}{s'}$ $\phi \simeq \tan \phi = \frac{h}{R}$

Substituting these expressions for α , β , and ϕ into Eq. \blacklozenge and eliminating the common factor *h*, we then have,

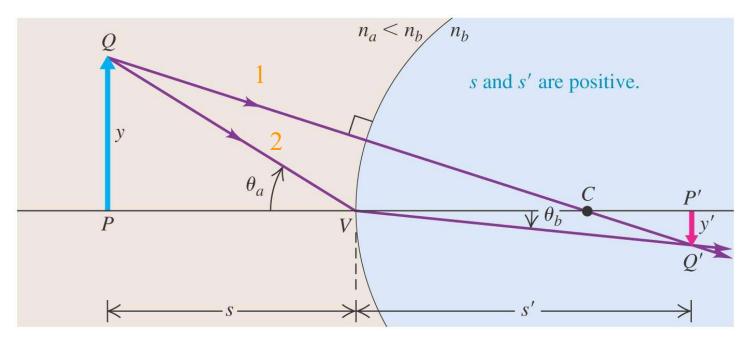
$$\implies \qquad \frac{n_a}{s} + \frac{n_b}{s'} = \frac{n_b - n_a}{R}$$

(object-image relationship, spherical refracting surface)

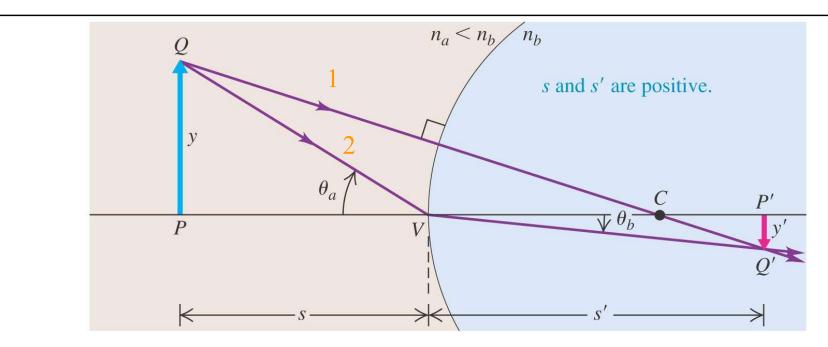
Similar to Spherical Mirrors, for Refracting Spherical Surfaces, the sign convention for the radius of curvature, *R*, is the same:

R is + when the center of curvature C is on the same side as the outgoing light and – otherwise.

To calculate the lateral magnification *m*, we consider the following rays:



- Ray 1 from Q going toward C (along the normal to the interface) will not suffer any deflection.
- Ray 2 from Q going toward V will be refracted into n_b according to Snell's law.



From geometry, we have the following relations,

$$\tan \theta_a = y/s$$
 $\tan \theta_b = -y'/s'$

From Snell's law, we have, $n_a \sin \theta_a = n_b \sin \theta_b$

Using the small angle approximation again (sin $\theta \sim \tan \theta$), the Snell's law can be rewritten as,

$$n_a \sin \theta_a = n_b \sin \theta_b \xrightarrow{\sin \theta \simeq \tan \theta} n_a \frac{y}{s} = -n_b \frac{y'}{s'}$$

Substituting these into the definition for lateral magnification, we have,

$$m = \frac{y'}{y} \longrightarrow m = -\frac{n_a s'}{n_b s}$$

(lateral magnification, spherical refracting surface)

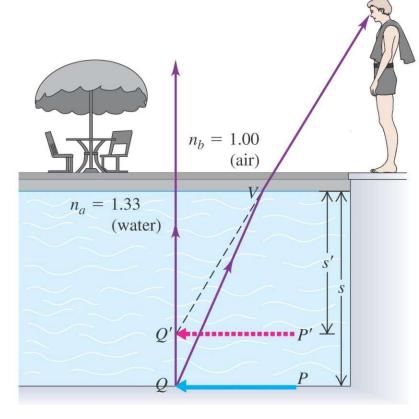
Refraction at a Flat Surface

For a flat surface, we have $R = \infty$. Then, the Object-Image relation can be reduced simply as,

$$\frac{n_a}{s} + \frac{n_b}{s'} = \frac{n_b - n_a}{\infty} = 0$$

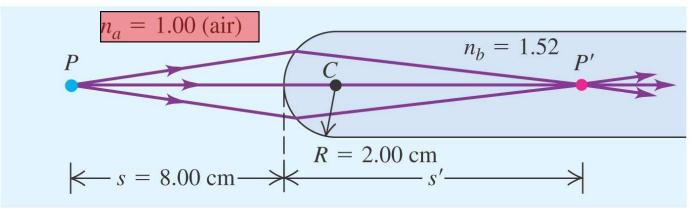
$$\rightarrow \frac{n_a}{s} = -\frac{n_b}{s'} \rightarrow \frac{n_a s'}{n_b s} = -1$$
 virtual

Combing this with our result for lateral magnification, we have, m = 1 (upright) so that, the image is *unmagnified* and *upright*.



Example 34.5 & 34.6

□ Images formed by a spherical surface can be *real* (+) or *virtual* (-) depending on n_a , n_b , *s*, and *R*.



Ex 34.5:

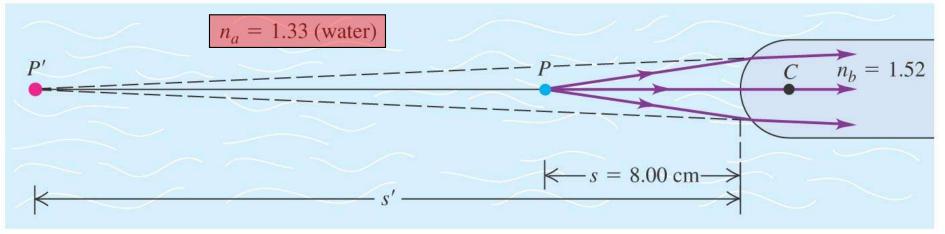
$$\frac{n_a}{s} + \frac{n_b}{s'} = \frac{n_b - n_a}{R} \rightarrow \frac{1.00}{8.00cm} + \frac{1.52}{s'} = \frac{0.52}{+2.00cm} \rightarrow s' = +11.3cm$$

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Example 34.5 & 34.6

□ Images formed by a spherical surface can be *real* (+) or *virtual* (-) depending on n_a , n_b , *s*, and *R*.

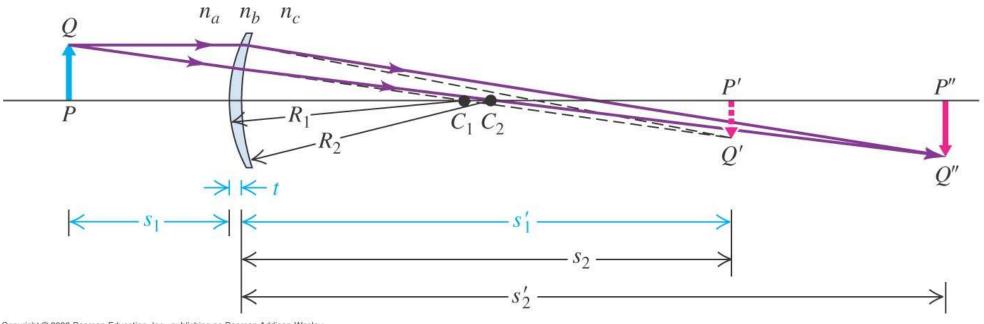
Ex 34.6:



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

$$\frac{n_a}{s} + \frac{n_b}{s'} = \frac{n_b - n_a}{R} \to \frac{1.33}{8.00cm} + \frac{1.52}{s'} = \frac{0.19}{+2.00cm} \to s' = -21.3cm$$

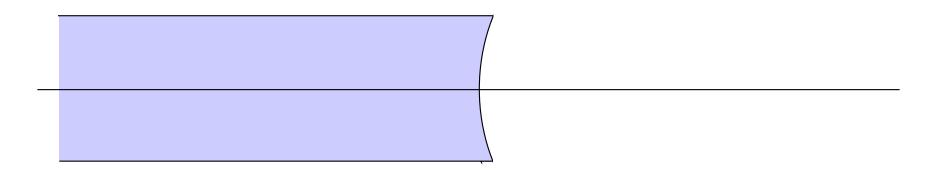
Consider a *thin* lens as two closely spaced spherical surfaces.



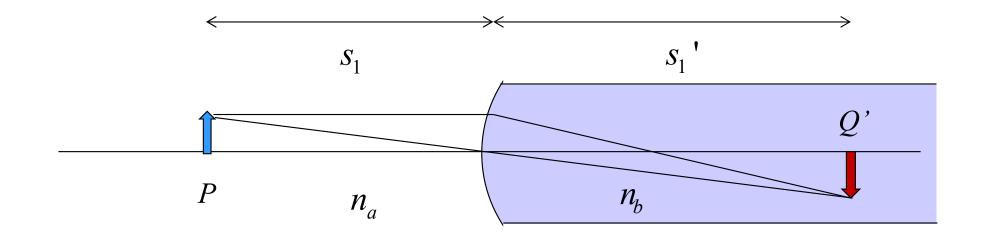
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

- "thin" means that *t* << other lengths
- For images produced by these two refracting surfaces, we will use the image Q' from the *first* surface as the *object* for the *second* surface

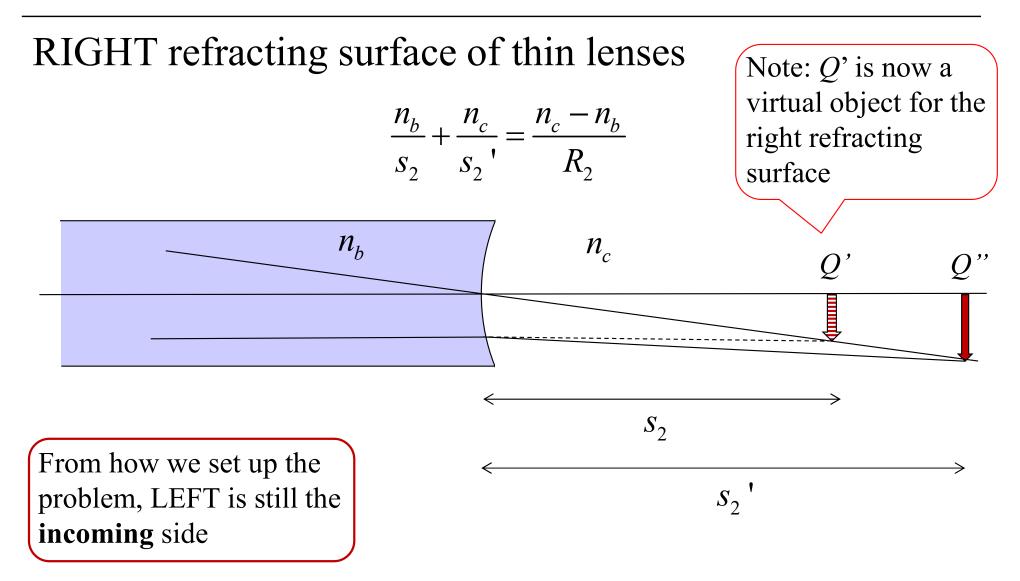
Consider a *thin* lens as two closely spaced spherical surfaces.

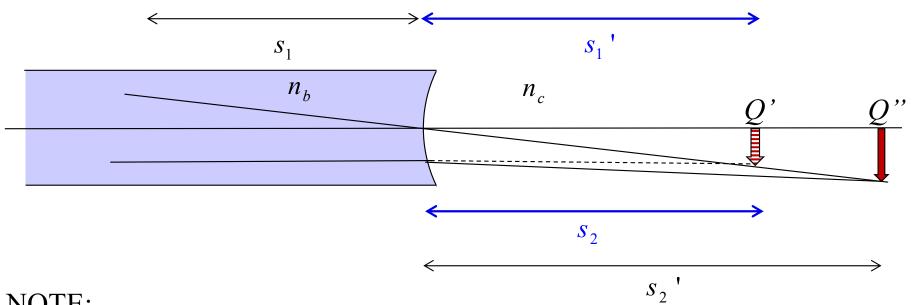


LEFT refracting surface of thin lenses



$$\frac{n_a}{s_1} + \frac{n_b}{s_1'} = \frac{n_b - n_a}{R_1}$$





NOTE:

For the situation indicated here, Q' is on the side of the "out-going" light. By the sign convention, we have: $s_1'(image \ dist 1) > 0$ and $s_2(object \ dist 2) < 0$

But, since they represent the same physical distance to Q', for consistency, we need to have:

$$s_2 = -s_1'$$

$$\frac{n_a}{s_1} + \frac{n_b}{s_1'} = \frac{n_b - n_a}{R_1}$$
(left surface)

$$\frac{n_b}{s_2} + \frac{n_c}{s_2}' = \frac{n_c - n_b}{R_2}$$
(right surface)

$$\frac{n_a}{s_1} + \frac{n_b}{s_1'} = \frac{n_b - n_a}{R_1}$$

$$\frac{n_b}{s_2} + \frac{n_c}{s_2'} = \frac{n_c - n_b}{R_2}$$
(left surface)
(right surface)

NOTES:

- Since both C_1 and C_2 are on the outgoing side of light, R_1 and R_2 are + by convention.
- Since the material outside of the lens is typically air or vacuum, we take n_a and $n_c = 1$.
- For simplicity, we will call n_b (for the lens itself) n.
- We also apply the image-to-object consistency relation: $s_2 = -s_1$ '

$$\frac{1}{s_1} + \frac{n}{s_1'} = \frac{n-1}{R_1} \qquad \qquad -\frac{n}{s_1'} + \frac{1}{s_2'} = \frac{1-n}{R_2}$$

To eliminate s_1 ' by adding these two equations:

where,

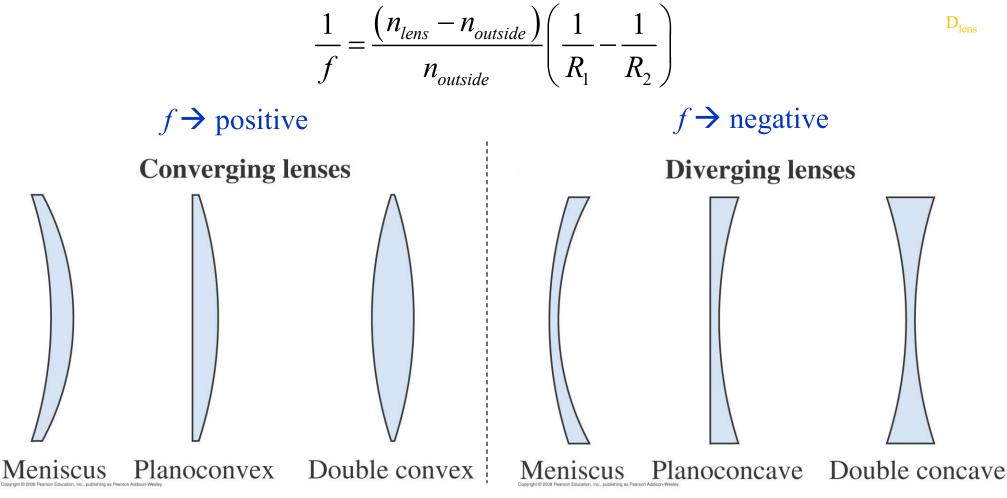
$$\frac{1}{s_1} + \frac{1}{s_2} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$

Calling our original object distance s_1 simply as *s* and our final image distance s_2 ' simply as *s*', we have:

$$\frac{1}{s} + \frac{1}{s'} = \frac{1}{f}$$
 (object-image relation, thin lens)
$$\frac{1}{f} = \left(n-1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$
 (lensmaker's equation)

Converging & Diverging lens

Depending on the values of n_{lens} , $n_{outside}$, R_1 and R_2 , f can be positive or negative !



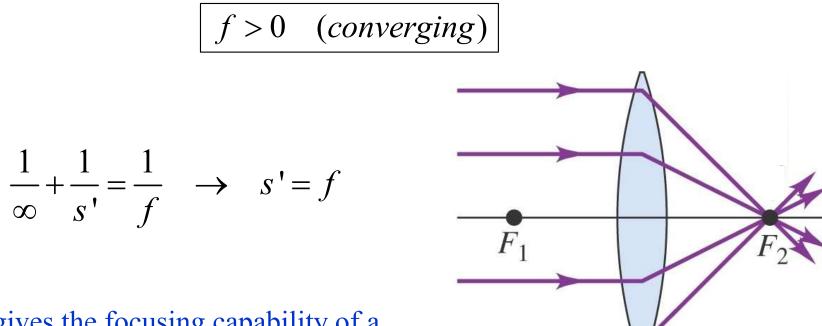
Sign Rules for Mirrors & Lens

- 1. Object Distance:
 - \Box s is + if the object is on the same side as the incoming light (for both reflecting and refracting surfaces) and s is otherwise.
- 2. Image Distance:
 - \Box s' is + if the image is on the same side as the outgoing light and is otherwise.
- 3. Object/Image Height:
 - \Box y (y') is + if the image (object) is erect or upright. It is if it is inverted.
- 4. Radius of Curvature:
 - \square R is + when the center of curvature C is on the same side as the outgoing light and otherwise.
- 5. Focus Length: (+ concave, convex)

(+ converging, - diverging)

Focal Points of a Converging Lens

Consider a far away object $(s = \infty)$ so that the incoming rays are parallel to the optical axis, these rays will all converge at one point (the *right* focal point F_2) at a distance *f* (the focal length) to the right of the lens,



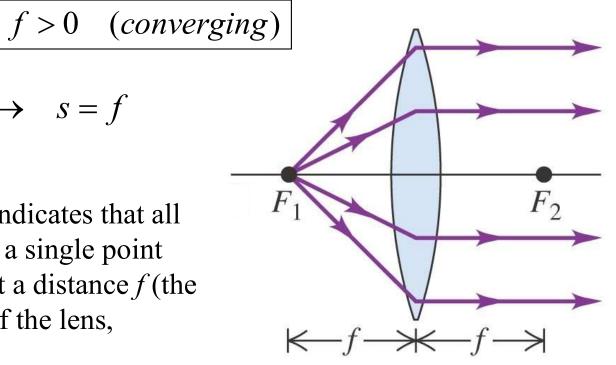
This gives the focusing capability of a thin lens.

Focal Points of a Thin Lens

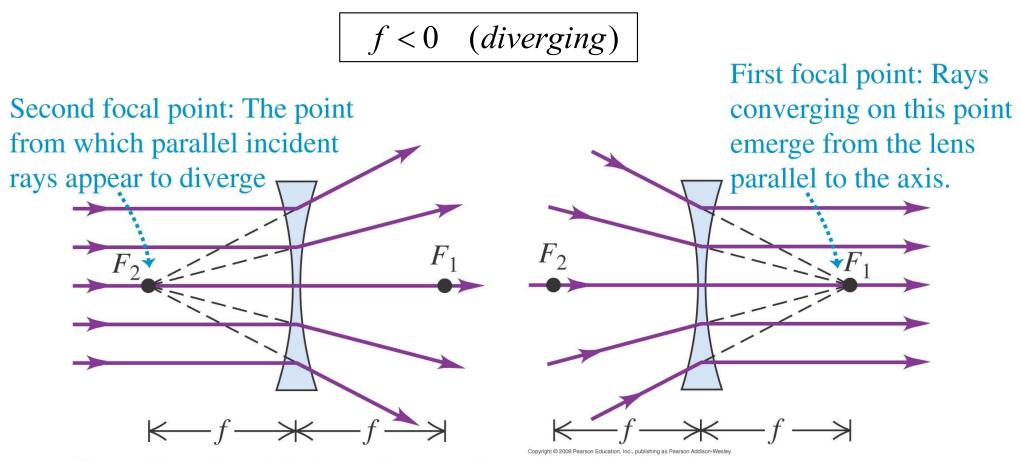
Now, consider the reverse situation, if the outgoing rays are all parallel to the optical axis so that the image is at infinity $(s' = \infty)$, where is the object originally located?

$$\frac{1}{s} + \frac{1}{\infty} = \frac{1}{f} \quad \rightarrow \quad s = f$$

This simple calculation indicates that all rays must originate from a single point (the *left* focal point F_1) at a distance f (the focal length) to the left of the lens,



Properties of a Diverging Lens



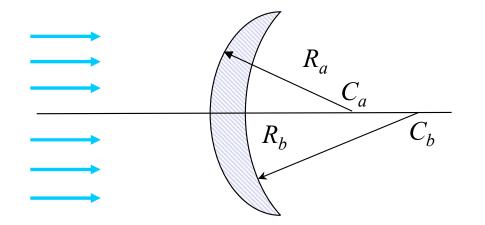
For a diverging thin lens, f is negative.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Symmetry of the Lensmaker's Equation

Because the Lensmaker's equation is symmetric with respect to the sign convention for R_a and R_b , the left *and* right focal lengths are the *same* irrespective of the difference in the values of R_a and R_b .

Example: Application of the Lensmaker's Equation:



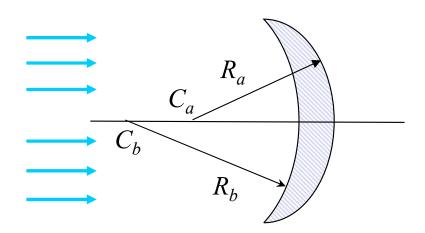
$$\frac{1}{f} = (n-1)\left(\frac{1}{R_a} - \frac{1}{R_b}\right)$$
$$= (1.33 - 1)\left(\frac{1}{10} - \frac{1}{15}\right) = \frac{0.33}{30} = 0.011$$
$$f = +90.9cm$$

 $R_a = +10.0cm (C_a \text{ same side as outgoing light})$ $R_b = +15.0cm (C_a \text{ same side as outgoing light})$

The lens is converging.

Symmetry of the Lensmaker's Equation

Now, we flip our lens around so that the refracting surface with R_b will be on the incoming light side,

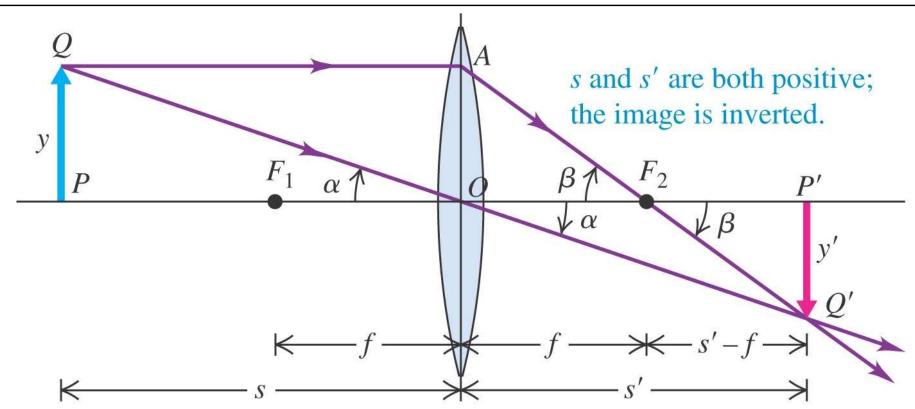


 $R_a = -10.0cm (C_a \text{ NOT on outgoing light side})$ $R_b = -15.0cm (C_a \text{ NOT on outgoing light side})$

$$\frac{1}{f} = (n-1)\left(\frac{1}{R_b} - \frac{1}{R_a}\right)$$
$$= (1.33 - 1)\left(-\frac{1}{15} - \left(-\frac{1}{10}\right)\right)$$
$$= 0.33\left(-\frac{1}{15} + \frac{1}{10}\right) = \frac{0.33}{30} = 0.011$$
$$f = +90.9cm$$

Same result as previous calculation!

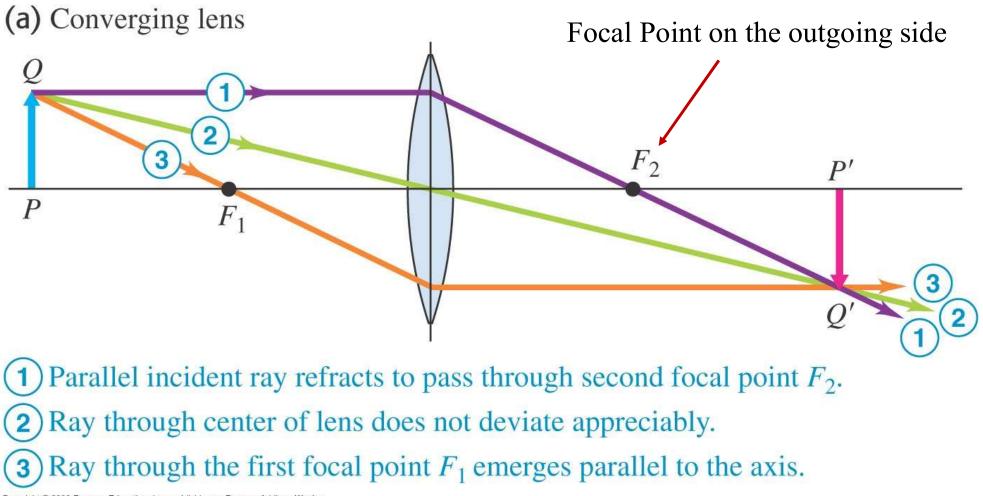
Lateral Magnification of Lenses



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley

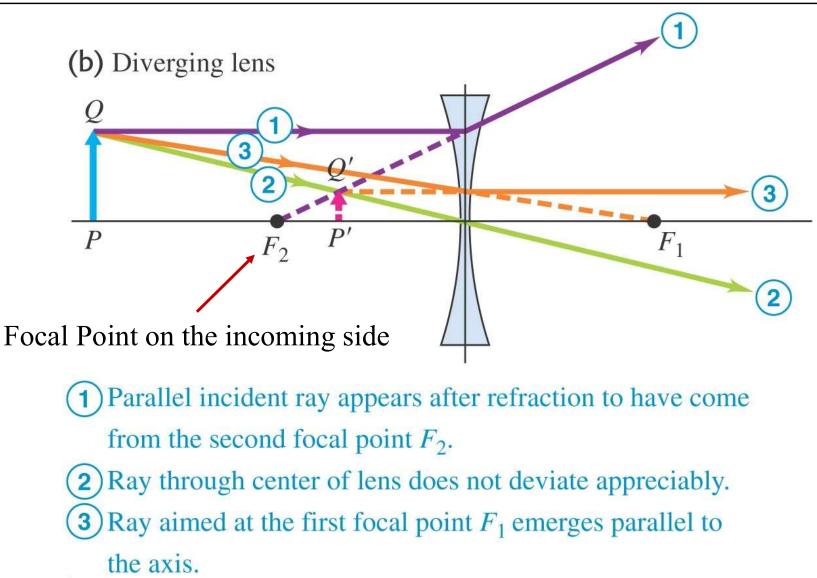
 $\triangle OPQ$ and $\triangle OP'Q'$ are similar, so that we have, $\frac{y}{s} = \frac{-y'}{s'}$ This gives, $m = \frac{y'}{y} = \frac{-s'}{s}$ (lateral magnification, thin lens)

Ray Tracing Methods for Lenses



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Rays Tracing Methods for Lenses



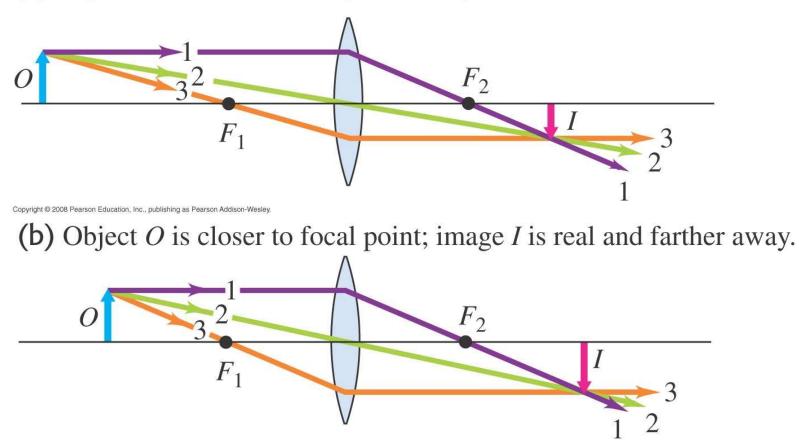
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Object-Image Relations: Thin Lenses

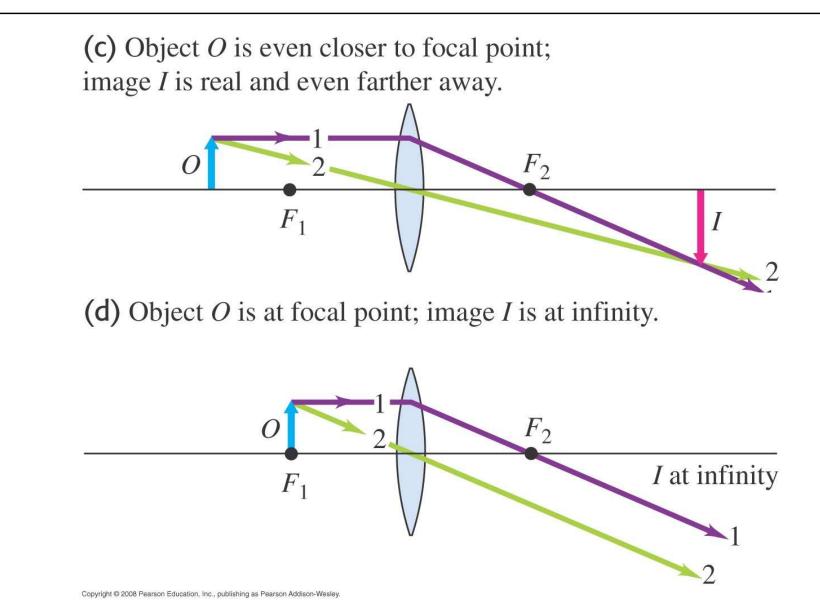
Thin Lens Applet (by Fu-Kwun Hwang)

http://www.physics.metu.edu.tr/~bucurgat/ntnujava/Lens/lens_e.html

(a) Object O is outside focal point; image I is real.

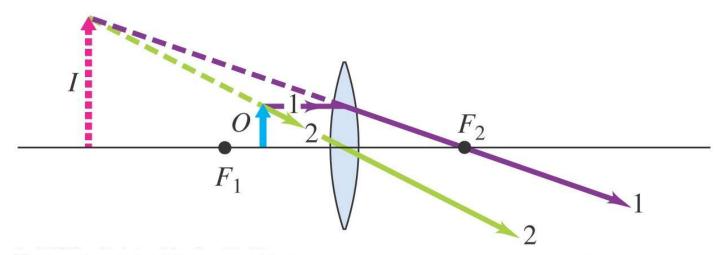


Object-Image Relations: Thin Lenses

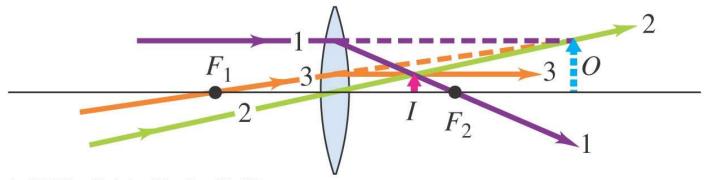


Object-Image Relations: Thin Lenses

(e) Object *O* is inside focal point; image *I* is virtual and larger than object.



(f) A virtual object O (light rays are *converging* on lens)



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.