
Geometric Methods: Rays Tracing
Principal rays for concave mirror



Example 34.4: Concave Mirror
P > C > F P = C



Example 34.4: Concave Mirror

P < F< CP = F



Geometric Methods: Rays Tracing
Principal rays for convex mirror

(might need to extrapolate lines to 
intersect at image point)



Example 34.4: Concave Mirror

Mirrors & Thin Lens Applet (by Fu-Kwun Hwang)

http://www.physics.metu.edu.tr/~bucurgat/ntnujava/Lens/lens_e.html

This applet is for both mirrors and thin lens.  Use the drop down menu to 
choose.



Demo with Two Circular Mirrors

forming a real image here

Ddouble mirrorDsp mirror



Refraction at a Spherical Surface

1
2

• Ray 1 from P going through V (normal to the interface) will not 
suffer any deflection.

• Ray 2 from P going toward B will be refracted into nb according to 
Snell’s law.

• Image will form at P’ where these two rays converge.



Refraction at a Spherical Surface

1
2 At B, Snell’s law 

gives,
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Refraction at a Spherical Surface
Again, consider only paraxial rays so that the incident angles are small, we 
can use the small angle approximations:  sin  ~ tan  ~ .

With this, Snell’s law becomes: a a b bn n 
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Substituting a and b from previous slide, we have,

With the small angle approximations, the trig relations reduce to,

tan
h

s
   tan

h

R
  tan

'

h

s
  



Refraction at a Spherical Surface

Substituting these expressions for , and  into Eq.         and eliminating the 
common factor h, we then have,
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(object-image relationship, 
spherical refracting surface)

Similar to Spherical Mirrors, for Refracting Spherical Surfaces, 
the sign convention for the radius of curvature, R, is the same:

 R is + when the center of curvature C is on the same side as the 
outgoing light and – otherwise.



Refraction at a Spherical Surface

To calculate the lateral magnification m, we consider the following rays:

1

2

• Ray 1 from Q going toward C (along the normal to the interface) will 
not suffer any deflection.

• Ray 2 from Q going toward V will be refracted into nb according to 
Snell’s law.



Refraction at a Spherical Surface

1

2

From geometry, we have the following relations,

sin sina a b bn n 

tan a y s  tan ' 'b y s  

From Snell’s law, we have,



Refraction at a Spherical Surface

Using the small angle approximation again (sin  ~ tan ), the 
Snell’s law can be rewritten as,
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Substituting these into the definition for lateral 
magnification, we have,
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Refraction at a Flat Surface

For a flat surface, we have           .  Then, the Object-Image 
relation can be reduced simply as, 

R  

0
'

a b b an n n n

s s


  



Combing this with our result for lateral 
magnification, we have,            (upright)
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so that, the image is unmagnified and 
upright.

virtual



Example 34.5 & 34.6
 Images formed by a spherical surface can be real (+) or 

virtual (-) depending on na, nb, s, and R.

Ex 34.5:
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Example 34.5 & 34.6
 Images formed by a spherical surface can be real (+) or 

virtual (-) depending on na, nb, s, and R.

Ex 34.6:
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Thin Lenses
Consider a thin lens as two closely spaced spherical 
surfaces.

• “thin” means that  t << other lengths 
• For images produced by these two refracting surfaces, we will use the image Q’

from the first surface as the object for the second surface



Thin Lenses
Consider a thin lens as two closely spaced spherical 
surfaces.



Thin Lenses
LEFT refracting surface of thin lenses
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Thin Lenses
RIGHT refracting surface of thin lenses
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Note: Q’ is now a 
virtual object for the 
right refracting 
surface

From how we set up the 
problem, LEFT is still the 
incoming side



Thin Lens

For the situation indicated here, Q’ is on the side of the “out-going” light.  By the 
sign convention, we have: 1 2' ( 1) 0 and ( 2) 0s image dist s object dist 

2 1 's s 

But, since they represent the same physical distance to Q’, for consistency, we 
need to have: 
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Thin Lens
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(left surface)
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(right surface)



Thin Lens

1 1 1'
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(left surface)
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NOTES:
• Since both C1 and C2 are on the outgoing side of light, R1 and R2 are + by convention.
• Since the material outside of the lens is typically air or vacuum, we take na and nc = 1.
• For simplicity, we will call nb (for the lens itself) n.
• We also apply the image-to-object consistency relation: s2 = - s1’

(right surface)
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Thin Lens
To eliminate s1’ by adding these two equations:
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Calling our original object distance s1 simply as s and our final image distance s2’ 
simply as s’, we have:
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where, (lensmaker’s equation)

(object-image relation, thin lens)



Converging & Diverging lens
Depending on the values of nlens, noutside , R1 and R2 , f can be positive or 
negative !
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1 2
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f positive f negative

Dlens



Sign Rules for Mirrors & Lens
1. Object Distance:

 s is + if the object is on the same side as the incoming light (for both 
reflecting and refracting surfaces) and s is – otherwise.

2. Image Distance:
 s’ is + if the image is on the same side as the outgoing light and is –

otherwise.

3. Object/Image Height:
 y (y’) is + if the image (object) is erect or upright.  It is – if it is 

inverted.

4. Radius of Curvature:
 R is + when the center of curvature C is on the same side as the 

outgoing light and – otherwise.

5. Focus Length: (+ concave, - convex) 
(+ converging, - diverging)



Focal Points of a Converging Lens

1 1 1
'
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Consider a far away object so that the incoming rays are parallel to the 
optical axis, these rays will all converge at one point (the right focal point F2) at a 
distance f (the focal length) to the right of the lens,

( )s  

This gives the focusing capability of a 
thin lens.

0 ( )f converging



Focal Points of a Thin Lens

1 1 1
s f
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Now, consider the reverse situation, if the outgoing rays are all parallel to the 
optical axis so that the image is at infinity               , where is the object originally 
located? 

( ' )s  

This simple calculation indicates that all 
rays must originate from a single point 
(the left focal point F1) at a distance f (the 
focal length) to the left of the lens, 

0 ( )f converging



Properties of a Diverging Lens
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Symmetry of the Lensmaker’s 
Equation

Because the Lensmaker’s equation is symmetric with respect to the sign 
convention for Ra and Rb, the left and right focal lengths are the same irrespective 
of the difference in the values of Ra and Rb.
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Example: Application of the Lensmaker’s Equation:
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The lens is converging.



Symmetry of the Lensmaker’s 
Equation

Now, we flip our lens around so that the refracting surface with Rb will be on the 
incoming light side,
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Lateral Magnification of Lenses

OPQ and                  are similar, so that we have,' 'OP Q

This gives, 
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Ray Tracing Methods for Lenses

Focal Point on the outgoing side



Rays Tracing Methods for Lenses

Focal Point on the incoming side



Object-Image Relations: Thin Lenses
Thin Lens Applet (by Fu-Kwun Hwang)

http://www.physics.metu.edu.tr/~bucurgat/ntnujava/Lens/lens_e.html



Object-Image Relations: Thin Lenses



Object-Image Relations: Thin Lenses


