
A Linearly Polarized EM Wave

For an electromagnetic wave, the direction of the electric field vector           
gives the polarization of the wave.( , )x tE



An transverse electromagnetic wave with 
polarization in the y-direction:
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A polarized wave in a well defined direction is called a linearly 
polarized wave.



The Action of a Polarizing Filter

Unpolarized incident light will be 
linearly polarized parallel to the 
polarizing axis after transmission.

We can analyze the intensity of the 
transmitted light passing thru the 
second polarizer (an analyzer):

Only        will be transmitted,E

costransE E E  



The Action of a Polarizing Filter
Since intensity (I) is proportional to E2,
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Polarization by Reflection

At the special angle (polarizing angle or Brewster’s angle) p, the electric 
field component parallel to the “plane of incidence” will not be reflected !

This occurs when 2b p    applet



Brewster’s Angle Weblink

http://physics.bu.edu/~duffy/semester2/c27_brewster.html



Polarization by Reflection

sin cosa p b pn n 

2b p   

From Snell’s law, we have,

sin sina p b bn n 

This gives

tan p b an n 

Then, using the condition for p:

sin sin( 2 )a p b pn n   

(Brewster’s Law)



Polarization by Reflection
53p

tan p b an n  For water/air (1.33/1) interface,

(with polarizer     to window plane)

56p
For glass/air (1.5/1) interface,

(with polarizer      to window plane) 



Polarization by Reflection
53p

tan p b an n  For water/air (1.33/1) interface,

(with polarizer     to reflection plane)

56p
For glass/air (1.5/1) interface,

(with polarizer      to reflection plane) 



Circular and Elliptical Polarization
An elliptical polarized wave resulted when we have the superposition of two 
linearly polarized EM waves. In the special case when the two waves have equal 
amplitudes and are separated in phase by a quarter-cycle, a circular polarized wave
will result. The resultant electric field vector      will appear to rotate in a circle.E



animation



Circular Polarization Weblink

http://webphysics.davidson.edu/physlet_resources/dav_optics/examples/polarization.html

https://www.youtube.com/watch?v=jY9hnDzA6Ps



Huygens’ Principle
Christiaan Huygens (1629-195): The Huygens’ Principle can be used to predict 
the spreading of light wave.  It is a geometrical construction using every point 
on a wave front as the source of secondary wavelets that spread out in all 
directions with a speed equal to the speed of propagation of the wave.

Application to the Law of Reflection

a



Huygens’ Principle Applies to 
Reflection

Since 
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Huygens’ Principle Applies to 
Reflection

Since 
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 AQO OPA  and r a 



Huygens’ Principle
Christiaan Huygens (1629-195): The Huygens’ Principle can be used to predict 
the spreading of light wave.  It is a geometrical construction using every point 
on a wave front as the source of secondary wavelets that spread out in all 
directions with a speed equal to the speed of propagation of the wave.



Huygens’ Principle Application to 
Refraction

Note: Wave slow down in material b !

Distance traveled by wave in b is shorter
 smaller wavelets



Huygens’ Principle Application to 
Refraction

In time t, the wavelet at Q travels to O and the 
wavelet at A travels to B.
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Using                                      , we have,andAQO OBA 

sin

sin
a a b

b b a

c n n
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


  

Substituting                                                and dividing,                                                anda a b bv c n v c n 

sin sina a b bn n  

(Snell’s Law)
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Chapter 34: Geometric Optics
 Reflection & 

Refraction at a Plane 
Surface

 Reflection & 
Refraction at a 
Spherical Surface

 Thin Lenses

 Optical Instruments



Images Formed by Flat Mirrors

Rays tracing to find image:

• Originate rays from a point on an 
object.

• Follow thru their reflections
• Image is located at where 

reflected rays converge to or 
seem to diverge from. (follow 
ray 1 and 2)

S Object Distance
S’ Image Distance Definitions:  Lateral Magnification 

'image height y
m

object height y
 



Real and Virtual Images
 Image can be real or virtual

 Real Image: rays actually first converge then 
diverge from the image point.

 Virtual Image: rays do not actually pass thru the 
image point but they appear to be diverging from 
it.

Image (real)

Image (virtual)object 



Images Form by Flat Mirrors

Since                                                                
are all congruent,

' ' ' ' ' ' ' 'PQV VV Q and VV Q VV Q and VV Q P Q V     
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(for flat mirrors)
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Sign Rules
1. Object Distance:

 s is + (real) if the object is on the same side as the 
incoming light (for both reflecting and refracting 
surfaces) and s is – (virtual) otherwise.

2. Image Distance:
 s’ is + (real) if the image is on the same side as the 

outgoing light and is – (virtual) otherwise.

3. Object/Image Height:
 y (y’) is + if the image (object) is erect or upright.  It is –

if it is inverted.

* Incoming is on the side where the “original” object is located



Sign Rules & Incoming/Outgoing



notes
 Clarify the image point issue (slide #7):

 For a flat refracting surface, if observed in the 
other medium (light arrives at eye after passing 
thru interface), the object will appear to be at P’. 

 If observed in the same medium (light arrives at 
eye without passing thru interface), the object 
will stay at P.



Images by Multiple 
Reflections/Refractions

When there are multiple reflecting and/or refracting 
surfaces, image formed by previous surface serves as 
object for the next surface.



Reflection at a Spherical Surface
Sign Rule (#4) for the 
radius of curvature of a 
spherical surface: 

The radius of curvature R
is + when the center of 
curvature C is on the same
side as the outgoing light 
(concave) and – otherwise.

(CV is called the optical axis.)

concave

convex

V

V



Reflection at a Spherical Surface

From ,PBC    

From ',CBP    

Subtracting the two eqs
and solve for  :

2   

          
     



Reflection at a Spherical Surface

Relating the angles to the 
physical distances, we have:
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Reflection at a Spherical Surface
Paraxial Assumption: We consider only rays which are nearly 
parallel to the optical axis and close to it.  These rays are called 
paraxial rays.

With this approximation, the angles , , and  will be small and 
 can be neglected with respect to s, s’, and R and

tan
h

s
   tan

h

R
  tan

'

h

s
  

Combining with                   and eliminating h, we then arrive at,2   

1 1 2

's s R
  (object-image relation, spherical mirror)



Focal Point and Focal Length
For an object (stars) very far away 
from the mirror            , the incoming 
rays can be considered to be parallel.  

( )s  

What will happen to these rays?

1 1 2
'

' 2

R
s

s R
   





Focal Point and Focal Length

So, all parallel rays from           will 
converge to the same image point at 
s’ = R/2.  This special point is called 
the focal point F and the distance 
from the vertex of the mirror to F is 
call the focal length f,

( )s  

2

R
f  (focal length of a 

spherical mirror)



Focal Point and Focal Length
Let consider the reverse situation, 
light rays are emanating from the 
focal point F, where will the image 
be?

2 1 2 1
0 '

' '
or s

R s R s
     

Thus, as expected, the situation 
is time reversed, rays starting out 
from F will be reflected out 
toward infinity as parallel rays.

2

R
f 



Spherical Aberration
Recall that this is only an approximation.  The focal 
point is a sharp point only if we consider paraxial rays.  
For non-paraxial rays, they do not necessary converge 
to a precise point.  The blurring of the focal point in an 
actual spherical mirror is called spherical aberration.



Parabolic vs. Circular Mirrors

With spherical aberrations  only 
paraxial rays fall on Focus

No spherical aberrations  all parallel 
rays fall on Focus



James Webb Space Telescope

https://webbtelescope.org/contents/articles/webb-stats

Carina Nebula



Image Description and Credits 

Carina Nebula (High resolution)

**Higher resolution is here: www.flickr.com/photos/nasawebbtelescope/52259221868/in/da... **

A star is born!

Behind the curtain of dust and gas in these “Cosmic Cliffs” are previously hidden baby stars, now uncovered by Webb. We know — this is a show-

stopper. Just take a second to admire the Carina Nebula in all its glory: nasa.gov/webbfirstimages/

Webb’s new view gives us a rare peek into stars in their earliest, rapid stages of formation. For an individual star, this period only lasts about 

50,000 to 100,000 years.

Image Description:

The image is divided horizontally by an undulating line between a cloudscape forming a nebula along the bottom portion and a comparatively 

clear upper portion. Speckled across both portions is a starfield, showing innumerable stars of many sizes. The smallest of these are small, 

distant, and faint points of light. The largest of these appear larger, closer, brighter, and more fully resolved with 8-point diffraction spikes. The 

upper portion of the image is blueish, and has wispy translucent cloud-like streaks rising from the nebula below. The orangish cloudy formation in 

the bottom half varies in density and ranges from translucent to opaque. The stars vary in color, the majority of which have a blue or orange hue. 

The cloud-like structure of the nebula contains ridges, peaks, and valleys – an appearance very similar to a mountain range. Three long diffraction 

spikes from the top right edge of the image suggest the presence of a large star just out of view.

Credits: NASA, ESA, CSA, and STScI



1

2

Lateral Magnification of a Spherical 
Mirror

Following rays #1 and #2, we can form the following two similar 
triangles: beige and blue.



Lateral Magnification of a Spherical 
Mirror

The two similar triangles gives,
'

'

y y

s s



Substituting this into the definition for m,
' 'y s

m
y s


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Convex Spherical Mirrors

The geometric optics formulas for a convex mirror are the same 
as for a concave mirror except that R and f are negative.

1 1 1 2

's s f R
  



Convex Spherical Mirrors
With R and f negative, parallel rays falling upon a convex mirror will 
diverge as if emanating from a virtual focal point F behind the mirror.  

convex concave



Convex Spherical Mirrors
With R and f negative, parallel rays falling upon a convex mirror will 
diverge as if emanating from a virtual focal point F behind the mirror.  
Rays aiming toward this virtual focal point will be reflected back
toward infinity as parallel rays.

convex concave



Summary for Spherical Mirrors
The following are valid for both concave and convex spherical 
mirrors if we follow the proper sign conventions.

1 1 1

's s f
  (object-image relation, spherical mirror)

2

R
f  (focal length, spherical mirror)

's
m

s
  (lateral magnification, spherical mirror)

Note: these equations agree with results for a flat mirror if we take             .R  


