

Problems

For instructor-assigned homework, go to MasteringPhysics®.

•, ••, •••: Problems of increasing difficulty. CP: Cumulative problems incorporating material from earlier chapters. CALC: Problems requiring calculus. BID: Biosciences problems.

DISCUSSION QUESTIONS

Q33.1 Light requires about 8 minutes to travel from the sun to the earth. Is it delayed appreciably by the earth's atmosphere? Explain. **Q33.2** Sunlight or starlight passing through the earth's atmosphere is always bent toward the vertical. Why? Does this mean that a star is not really where it appears to be? Explain.

Q33.3 A beam of light goes from one material into another. On *physical* grounds, explain *why* the wavelength changes but the frequency and period do not.

Q33.4 A student claimed that, because of atmospheric refraction (see Discussion Question Q33.2), the sun can be seen after it has set and that the day is therefore longer than it would be if the earth had no atmosphere. First, what does she mean by saying that the sun can be seen after it has set? Second, comment on the validity of her conclusion.

Q33.5 When hot air rises from a radiator or heating duct, objects behind it appear to shimmer or waver. What causes this?

Q33.6 Devise straightforward experiments to measure the speed of light in a given glass using (a) Snell's law; (b) total internal reflection; (c) Brewster's law.

Q33.7 Sometimes when looking at a window, you see two reflected images slightly displaced from each other. What causes this?

Q33.8 If you look up from underneath toward the surface of the water in your aquarium, you may see an upside-down reflection of your pet fish in the surface of the water. Explain how this can happen.

Q33.9 A ray of light in air strikes a glass surface. Is there a range of angles for which total reflection occurs? Explain.

Q33.10 When light is incident on an interface between two materials, the angle of the refracted ray depends on the wavelength, but the angle of the reflected ray does not. Why should this be?

Q33.11 A salesperson at a bargain counter claims that a certain pair of sunglasses has Polaroid filters; you suspect that the glasses are just tinted plastic. How could you find out for sure?

Q33.12 Does it make sense to talk about the polarization of a *longitudinal* wave, such as a sound wave? Why or why not?

Q33.13 How can you determine the direction of the polarizing axis of a single polarizer?

Q33.14 It has been proposed that automobile windshields and headlights should have polarizing filters to reduce the glare of oncoming lights during night driving. Would this work? How should the polarizing axes be arranged? What advantages would this scheme have? What disadvantages?

Q33.15 When a sheet of plastic food wrap is placed between two crossed polarizers, no light is transmitted. When the sheet is stretched in one direction, some light passes through the crossed polarizers. What is happening?

Q33.16 If you sit on the beach and look at the ocean through Polaroid sunglasses, the glasses help to reduce the glare from sunlight reflecting off the water. But if you lie on your side on the beach, there is little reduction in the glare. Explain why there is a difference.

Q33.17 When unpolarized light is incident on two crossed polarizers, no light is transmitted. A student asserted that if a third polarizer is inserted between the other two, some transmission will occur. Does this make sense? How can adding a third filter *increase* transmission?

Printed by Paul So (paso@gmu.edu) on 10/6/2014 from 129.174.252.170 authorized to use until 1/13/2020. Use beyond the authorized user or valid subscription date represents a copyright violation.

Q33.18 For the old "rabbit-ear" style TV antennas, it's possible to alter the quality of reception considerably simply by changing the orientation of the antenna. Why?

Q33.19 In Fig. 33.32, since the light that is scattered out of the incident beam is polarized, why is the transmitted beam not also partially polarized?

033.20 You are sunbathing in the late afternoon when the sun is relatively low in the western sky. You are lying flat on your back, looking straight up through Polaroid sunglasses. To minimize the amount of sky light reaching your eyes, how should you lie: with your feet pointing north, east, south, west, or in some other direction? Explain your reasoning.

Q33.21 Light scattered from blue sky is strongly polarized because of the nature of the scattering process described in Section 33.6. But light scattered from white clouds is usually *not* polarized. Why not?

Q33.22 Atmospheric haze is due to water droplets or smoke particles ("smog"). Such haze reduces visibility by scattering light, so that the light from distant objects becomes randomized and images become indistinct. Explain why visibility through haze can be improved by wearing red-tinted sunglasses, which filter out blue light.

Q33.23 The explanation given in Section 33.6 for the color of the setting sun should apply equally well to the *rising* sun, since sunlight travels the same distance through the atmosphere to reach your eyes at either sunrise or sunset. Typically, however, sunsets are redder than sunrises. Why? (*Hint:* Particles of all kinds in the atmosphere contribute to scattering.)

Q33.24 Huygens's principle also applies to sound waves. During the day, the temperature of the atmosphere decreases with increasing altitude above the ground. But at night, when the ground cools, there is a layer of air just above the surface in which the temperature *increases* with altitude. Use this to explain why sound waves from distant sources can be heard more clearly at night than in the daytime. (*Hint:* The speed of sound increases with increasing temperature. Use the ideas displayed in Fig. 33.37 for light.)

Q33.25 Can water waves be reflected and refracted? Give examples. Does Huygens's principle apply to water waves? Explain.

EXERCISES

Section 33.2 Reflection and Refraction

33.1 • Two plane mirrors intersect at right angles. A laser beam strikes the first of them at a point 11.5 cm from their point of intersection, as shown in Fig. E33.1 For what angle of incidence at the first mirror will this ray strike the midpoint of the second mirror (which is 28.0 cm long) after reflecting from the first mirror?

33.2 • **BIO** Light Inside the Eye. The vitreous humor, a transparent, gelatinous fluid that fills most of the eyeball, has an index of refraction of 1.34. Visible light ranges in wavelength from 380 nm (violet) to 750 nm (red), as measured in air. This light travels through the vitreous humor and strikes the rods and cones at the surface of the retina. What are the ranges of (a) the wavelength, (b) the frequency, and (c) the speed of the light just as it approaches the retina within the vitreous humor?

33.3 • A beam of light has a wavelength of 650 nm in vacuum. (a) What is the speed of this light in a liquid whose index of refraction at this wavelength is 1.47? (b) What is the wavelength of these waves in the liquid?

33.4 • Light with a frequency of 5.80×10^{14} Hz travels in a block of glass that has an index of refraction of 1.52. What is the wavelength of the light (a) in vacuum and (b) in the glass?

33.5 • A light beam travels at 1.94×10^8 m/s in quartz. The wavelength of the light in quartz is 355 nm. (a) What is the index of refraction of quartz at this wavelength? (b) If this same light travels through air, what is its wavelength there?

33.6 •• Light of a certain frequency has a wavelength of 438 nm in water. What is the wavelength of this light in benzene?

33.7 •• A parallel beam of light in air makes an angle of 47.5° with the surface of a glass plate having a refractive index of 1.66. (a) What is the angle between the reflected part of the beam and the surface of the glass? (b) What is the angle between the refracted beam and the surface of the glass?

33.8 •• A laser beam shines along the surface of a block of transparent material (see Fig. E33.8.). Half of the beam goes straight to a detector, while the other half travels through the

block and then hits the detector. The time delay between the arrival of the two light beams at the detector is 6.25 ns. What is the index of refraction of this material?

33.9 • Light traveling in air is incident on the surface of a block of plastic at an angle of 62.7° to the normal and is bent so that it makes a 48.1° angle with the normal in the plastic. Find the speed of light in the plastic.

33.10 • (a) A tank containing methanol has walls 2.50 cm thick made of glass of refractive index 1.550. Light from the outside air strikes the glass at a 41.3° angle with the normal to the glass. Find the angle the light makes with the normal in the methanol. (b) The tank is emptied and refilled with an unknown liquid. If light incident at the same angle as in part (a) enters the liquid in the tank at an angle of 20.2° from the normal, what is the refractive index of the unknown liquid?

Figure **E33.11**

33.11 •• As shown in Fig. E33.11, a layer of water covers a slab of material X in a beaker. A ray of light traveling upward follows the path indicated. Using the information on the figure, find (a) the index of refraction of material X and (b) the angle the light makes with the normal in the *air*.

33.12 •• A horizontal, parallel-sided plate of glass having a refractive index of 1.52 is in contact with the surface of

water in a tank. A ray coming from above in air makes an angle of incidence of 35.0° with the normal to the top surface of the glass. (a) What angle does the ray refracted into the water make with the normal to the surface? (b) What is the dependence of this angle on the refractive index of the glass?

33.13 •• In a material having an index of refraction n, a light ray has frequency f, wavelength λ , and speed v. What are the frequency, wavelength, and speed of this light (a) in vacuum and

Printed by Paul So (paso@gmu.edu) on 10/6/2014 from 129.174.252.170 authorized to use until 1/13/2020. Use beyond the authorized user or valid subscription date represents a copyright violation.