
Entropy Changes for Different 
Processes
6. Irreversible Processes:

Although for a given irreversible process, we cannot write  
dS = dQr/T, DS between a well defined initial state a and final state b 
can still be calculated using a surrogate reversible process connecting 
a and b.  (S is a state variable!) 

Example 20.8: (adiabatic free expansion of an ideal gas)

Initial State a: (V,T) Final State b: (2V,T)

Since Q=W=0, DU=0.
For an ideal gas, this 
means that DT=0 also.

Although Q=0, but DS 
is not zero!
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DS in an Adiabatic Free Expansion
Important point: Since S is a state variable, DS is the same for 
any processes connecting the same initial a and final b states.

In this case, since T does not change, we can use an surrogate isothermal 
process to take the ideal gas from state a (V,T) to state b (2V,T) to calculate DS.

Applying our general formula to the surrogate 
isothermal expansion,
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2nd Law (Quantitative Form)

“The total entropy (disorder) of an isolated system in any 
processes can never decrease.”
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“Nature always tends toward the macrostate with the highest S
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2nd Law (DS > 0 & Clausius Statement)
Clausius Statement: Heat can’t spontaneously transfer from TC to TH.

We will prove this by contradiction using DStot > 0.

Assume the contrary,
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2nd Law (DS > 0 & Kelvin-Planck 
Statement)

Kelvin-Planck Statement: No heat engine can convert heat from TH

completely into W.

We will prove this by contradiction again using the DStot > 0.

Assume the contrary,
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2nd Law (DS > 0 & Carnot Theorem)
For any reversible heat engines,
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2nd Law (DS > 0 & Carnot Theorem)

Consider the efficiency of a heat engine in general,
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Applying the inequality from the previous slide,
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Example: DS for some Reversible 
Processes in an Ideal Gas 

One mole of monatomic gas doubles its volume .  Calculate the entropy 
change if the expansion is done through i) a reversible isobaric process, 
ii) a reversible adiabatic process, and iii) a reversible isothermal 
process.

link to solution

http://complex.gmu.edu/www-phys/phys262/soln/delsexample.pdf



Example 20.6

1.00kg of water at 0oC is slowly (quasi-statically) heated to 100oC.  
(no phase change)   Calculate        .
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(Entropy increases as 
water get hotter and water 
molecules get more 
agitated.)



Entropy Changes for Different 
Processes

5. During Phase Changes (or other isothermal 
Processes):
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Example 20.10

1.00kg of water at 100oC is place in thermal contact with 1.00kg of water at 0oC.
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First, we can solve for Tf  :
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Microscopic Interpretation of Entropy
Microstate vs. Marcrostate:

Recall:

Macrostate: a bulk description of a system in terms of 
its marcoscopic variables.

Microstate: a specific description of the properties of 
the individual constituent of the system.
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Microscopic Interpretation of Entropy
Observations:
1. For a given macrostate, typically there are many 

possible microstates! 

(If the # of coins (or molecules) is large (~ NA), the 
# of microstates corresponding to a particular 
macrostate can be astronomically large.)

2. All individual microstates are equally likely.

(Each coin has exactly 50% being head or tail and 
each toss is independent.)



Microscopic Interpretation of Entropy
Observations:
3. However, for a given macrostate, the # of possible 

microstates are different! 

 Since all microstates are equally likely, the 
probability for different macrostates is different.

4. Some macrostate are much more probable than 
others.

(When N~NA, this disparity can be huge!)



Microscopic Interpretation of Entropy

Important Observations:
5. The less probable macrostates (all heads or all tails) 

correspond to more ordered microstates!

6. The more probable macrostates (50/50 heads and 
tails) correspond to the more disordered 
microstates.



Microscopic Interpretation of Entropy

lnS k W

where W is the # of possible microstates for a given macrostate 
and k is the Boltzmann constant.

These observations motivate the following microscopic 
definition of entropy:

Example (4 coins):

macrostate (all heads)
# of microstates = 1

ln1 0S k 

All matched coins (ordered)

macrostate (3 H & 1 T)
# of microstates = 4

ln 4S k

unmatched coins (less order)

Boltzmann’s Equation


