Entropy Changes for Different
Processes

6.  Irreversible Processes:

Although for a given irreversible process, we cannot write

dS =dQ /T, AS between a well defined 1nitial state a and final state b
can still be calculated using a surrogate reversible process connecting
a and b. (S 1s a state variable!)

Example 20.8: (adiabatic free expansion of an ideal gas)

Initial State a: (V,T7)  Final State b: (2V,T)

Since O=W=0, AUfO. % Trinay L7)
For an ideal gas, this Pa - &
means that A7=0 also. (2v,T)
) > Eeids Fa | .
Although 0=0,butAS [ AL
is not zero! Traeetssss Tols soies 1%
oL V.2




AS 1n an Adiabatic Free Expansion

Important point: Since S 1s a state variable, AS 1s the same for
any processes connecting the same 1nitial a and final b states.

In this case, since 7 does not change, we can use an surrogate isothermal
process to take the ideal gas from state a (V,T) to state b (2V,T) to calculate AS.

Applying our general formula to the surrogate

p
1sothermal expansion,
()
Pa [~
N ) AS =nC, In I +nRIn Y
Pa | | 4 g T V.
2 I i i
I W |
| : v we have,
& 4 2V

Surrogate AS = %+ nRIn (2—1/) =nRIn2=5.76J /K
Isothermal Expansion r v (n=1)



20d [aw (Quantitative Form)

N

AS,, =AS,, +AS,, >0

(AS,, =0 reversible; AS,, >0 irreversible)

“The total entropy (disorder) of an isolated system in any
processes can never decrease.”

“Nature always tends toward the macrostate with the highest §
(disorder) [most probable] in any processes.”



20d Law (AS > 0 & Clausius Statement)

Clausius Statement: Heat can’t spontaneously transfer from 7 to 7,.

We will prove this by contradiction using AS, , > 0.

Assume the contrary, 0
cold

-|— + —

AS, = ‘— (heat absorbed into T}, AS, = ‘Q‘ + ‘Q‘
i I e (1,51)

_‘ Q‘ 1 H L

AS, = T (heat released by T ) ‘Q ‘ T_ - T_ =
c
!
(with the explicit signs, Not Possible!

|Q| 1s taken to be +.) (violated AS,,,> 0)



2“!l Law (AS > 0 & Kelvin-Planck

Statement)

Kelvin-Planck Statement: No heat engine can convert heat from 7,
completely into V.

We will prove this by contradiction again using the AS, , > 0.

Assume the contrary, AS

engine = (engine operates in a cycle)

AS. =0 (no heat exchange)

Impossible

_‘QH‘

H

<0

So, AS, , =AS

engine

+AS,, +AS, =

100%-efficient
engine

) Not Possible!
( i W (again violated AS, > 0)




e ——————————————————
20d Law (AS > 0 & Carnot Theorem)

For any reversible heat engines,

ASengine = O

AS = +‘QC‘ - _‘QH‘ 20d T aw
eny TC TH /

AS, =AS, . +AS = Oc| 104 > ()

engine env
T C T H

. \ | :]1> ‘QC‘Z‘QH‘ ‘QC‘ZTC
Cold reservoir at I. T . |QH ‘ 1
temperature 7




e ——————————————————
20d Law (AS > 0 & Carnot Theorem)

Consider the efficiency of a heat engine in general,

e=1- ‘QC‘
0,]
: : : , . [oA I
Applying the inequality from the previous slide, 0,77
e=1- o] <1-Zc
o, T
- L 1.
Recall that the efficiency of a Carnot Cycle is givenby e ==1— T_
H

This gives our desired result, e<e_ .. Carnot engine is the most efficient!

Extra:engines




Example: AS for some Reversible
Processes 1n an Ideal Gas

One mole of monatomic gas doubles its volume . Calculate the entropy
change if the expansion is done through 1) a reversible isobaric process,
i1) a reversible adiabatic process, and ii1) a reversible isothermal
process.

link to solution

http://complex.gmu.edu/www-phys/phys262/soln/delsexample.pdf
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Example 20.6

1.00kg of water at 0°C is s/lowly (quasi-statically) heated to 100°C.
(no phase change) Calculate AS .

From each of the infinitesimal step, we have d§ = d7Q
T, T,
T
AS — J- a9 _ _[ mc, d
r Lo T
T
=mc, In [—f]
T
B 100+273 (Entropy increases as
=1.00kg (4190J [ kg 'K) ln( 0+273 j water get hotter and water

molecules get more

=4190J /K (0.3121)=+1308J /K >0 agitated.)



Entropy Changes for Different
Processes

5. During Phase Changes (or other 1sothermal
Processes):

(T stays constant during a

dQg 1
AS :I T - T de phase change.)

Q mL
T T

AS =




Example 20.10

1.00kg of water at 100°C is place in thermal contact with 1.00kg of water at 0°C.

First, we can solve for 7 :

me, (T =T, )+ me, (To =T.) =0 = T = L ;Tczsooc

Now, AS,, =AS, +AS,

T T
=mc,, In Jinal 4 mc, In final
7, T

~ 1.00kg (4190 / kg - K )| In| 2273 | 1y 50”73)
100+273 273

:419OJ/K(—O.1439+O.1682) =+102J /K >0




Microscopic Interpretation of Entropy

. . Macroscopic Corresponding
MlcrOState VS. MarcrOState. state microsc()pic states
Two heads, o
Macroscopic Corresponding two tails
state miCroscopic states
Four heads
Three heads,
one tails
Recall: One head,
three tails
Macrostate: a bulk description of a system in terms of
its marcoscopic variables.
Four tails

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.



Microscopic Interpretation of Entropy

. . Macroscopic Corresponding
Mlcro State VS. Marcro State . state micr()sc()pic states

Two heads, D@D D

Macroscopic Corresponding two tails

state microscopic states

Four heads

Three heads,

one tails

Recall: One head,

three tails

Macrostate: a bulk description of a system in terms of
its marcoscopic variables.

Microstate: a specific description of the properties of
the individual constituent of the system. Four tails

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.
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Microscopic Interpretation of Entropy

Observations:

1. For a given macrostate, typically there are many
possible microstates!

(If the # of coins (or molecules) 1s large (~ N,), the
# of microstates corresponding to a particular
macrostate can be astronomically large.)

2. All individual microstates are equally likely.

(Each coin has exactly 50% being head or tail and
each toss 1s independent.)



Microscopic Interpretation of Entropy

Observations:

3. However, for a given macrostate, the # of possible
microstates are different!

-> Since all microstates are equally likely, the
probability for different macrostates 1s different.

4. Some macrostate are much more probable than
others.

(When N~N ,, this disparity can be huge!)
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Microscopic Interpretation of Entropy

Important Observations:

5. The less probable macrostates (all heads or all tails)
correspond to more ordered microstates!

6. The more probable macrostates (50/50 heads and
tails) correspond to the more disordered
microstates.



Microscopic Interpretation of Entropy

These observations motivate the following microscopic
definition of entropy:

S=klnW Boltzmann’s Equation

where W is the # of possible microstates for a given macrostate
and k 1s the Boltzmann constant.

Example (4 coins):
macrostate (all heads) macrostate (3 H & 1 T)
& # of microstates = 1

# of microstates = 4

S=kIn4d

unmatched coins (less order)



