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Entropy: Disorder

Recall that the 2™ Law of Thermodynamics is a statement on nature’s
preferential direction for systems to move toward the state of disorder.

Let see how Entropy is a quantitative measure of disorder.

From our previous derivation, the quantity dQ / T was from the isothermal
branch of the infinitesimal Carnot cycle. Let look at an isothermal expansion
of an 1deal gas microscopically:

| Intuitively, as the gas expands into a bigger
volume, the degree of randomness for the
- system increases since molecules now have

- 235‘8 1 soL more choices (spaces) for them to move around.
.. /‘/ One can associate the increase in randomness to
Ll L the ratio:
‘- 300K [ = 300 K] AV 14

(Recall T stays the same > avg. KE stays the same)



- kK
Entropy: Disorder

Since this 1s an 1sothermal process, we have the following relation from the 15t Law:

nRT dQ dV

dQ =dW = PdV = 7] G w—
< V r v

(dU =0)

So, the newly introduced macroscopic variable S (entropy),

ds =42 [S]=J/K
T

1s a quantitative measure of the degree of disorder of the system.

dS 1s an infinitesimal entropy change for a reversible process at temperature 7.
For any finite reversible process, the total entropy change AS is,

i



_—
Entropy

d
dSEd—Q and C_‘SdS: QF=O [S]=J/K

This state variable S is called the entropy of the system.

Entropy 1s macroscopic variable describing the degree of disorder of the system.



Entropy Changes for Different
Processes

1. Qeneral Reversible Processes:

s fasf 2.

Note: S is a state variable, AS 1s the same for all processes

(including irreversible ones) with the same 1nitial and final
states!

P NOTE: in most applications,

l it 1s the change in entropy AS
® which one typically needs to

f calculate and not § itself.




Entropy Changes for Different
Processes

>, Reversible Cycles:

cycle o Cﬁ ds =

cycle cycle

=O

3. Any Reversible Processes (not just cycles) for an
Idea Gas:

(7.,V.)—> (Tf , Vf) (Note: Thru the Ideal Gas Law, P
1s fixed for a given pairof 7 & V.)
15t Law gives,  dU =dQ —dW
dQ. =dU +dW =nC,dT + PdV

nRT
V

dVv

dQ. =nC,dT +



Entropy Changes for Different
Processes

Dividing T on both sides and integrating,

A A
s =92~ [ 2T

v

So, we have,

Tf Vf
AS =nC, In| = |[+nRIn| —
T Z




Entropy: Disorder
(General Reversible Process)

In our discussion of AS for an i1deal gas through a general reversible
process, we Just derived the following relation,

S
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Entropy Changes for Different
Processes

4. Calorimetric Changes:

dQ = mcdT
I I
T
AS — _[ a0 _ _[ mcd
T < T
: s I,
If ¢ 1s constant within temperature range, AS =mcIn e

dT

ve(T
If ¢(T')is a function of 7, ASzmjc( T)



Entropy Changes for Different
Processes

5. During Phase Changes (or other 1sothermal
Processes):

(T stays constant during a

dQg 1
AS :I T - T de phase change.)

Q mL
T T

AS =




Entropy Changes for Different
Processes

6.  Irreversible Processes:

Although for a given irreversible process, we cannot write

dS =dQ /T, AS between a well defined 1nitial state a and final state b
can still be calculated using a surrogate reversible process connecting
a and b. (S 1s a state variable!)

Example 20.8: (adiabatic free expansion of an ideal gas)

Initial State a: (V,T7)  Final State b: (2V,T)

Since Q= w=0, AUfO. % TIOVI] L7)
For an ideal gas, this Pa |- ®
means that A7=0 also. 2V, T
] W iy B g
Although 0=0,but AS [ s
is not Zero! 7:'.'-.'.'.'::.':'::.': T:..'.. '..‘ K \V4
e N A




AS 1n an Adiabatic Free Expansion

Important point: Since S 1s a state variable, AS 1s the same for
any processes connecting the same 1nitial a and final b states.

In this case, since 7 does not change, we can use an surrogate isothermal
process to take the ideal gas from state a (V,T) to state b (2V,T) to calculate AS.

Applying our general formula to the surrogate

p
1sothermal expansion,
()
Pa |~
NS ) AS =nC, In I +nRIn Y
Pa | : b - T V
2 I i j
I W |
| ) v we have,
O V 2V

Surrogate AS = %+ nRIn (2—1/) =nRIn2=5.76J /K
Isothermal Expansion r v (n=1)



20d [aw (Quantitative Form)

N

AS,, =AS,, +AS,, >0

(AS,, =0 reversible; AS,, >0 irreversible)

“The total entropy (disorder) of an isolated system in any
processes can never decrease.”

“Nature always tends toward the macrostate with the highest §
(disorder) [most probable] in any processes.”



20d Law (AS > 0 & Clausius Statement)

Clausius Statement: Heat can’t spontaneously transfer from 7 to 7,.

We will prove this by contradiction using AS, , > 0.

Assume the contrary, 0
cold

-|— + —

AS, = ‘— (heat absorbed into T}, AS, = ‘Q‘ + ‘Q‘
i I e (1,51)

_‘ Q‘ 1 H L

AS, = T (heat released by T ) ‘Q ‘ T_ - T_ =
c
!
(with the explicit signs, Not Possible!

|Q| 1s taken to be +.) (violated AS,,,> 0)



2“!l Law (AS > 0 & Kelvin-Planck

Statement)

Kelvin-Planck Statement: No heat engine can convert heat from 7,
completely into V.

We will prove this by contradiction again using the AS, , > 0.

Assume the contrary, AS

engine = (engine operates in a cycle)

AS. =0 (no heat exchange)

B f::  “

Impossible

_‘QH‘

H

<0

So, AS, , =AS

engine

+AS,, +AS, =

100%-efficient
engine

Not Possible!
( - W (again violated AS, > 0)
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20d Law (AS > 0 & Carnot Theorem)

For any reversible heat engines,

ASengine = O

AS = +‘QC‘ - _‘QH‘ 20d T aw
eny TC TH /

AS, =AS, . +AS = Oc| 104 > ()

engine env
T C T H

. \ | :]1> ‘QC‘Z‘QH‘ ‘QC‘ZTC
Cold reservoir at T, C T o o |Q H ‘ T H
temperature 7




e ——————————————————
20d Law (AS > 0 & Carnot Theorem)

Consider the efficiency of a heat engine in general,

e=1- ‘QC‘
0,]
: : : , . [oA I
Applying the inequality from the previous slide, 0,77
e=1- o] <1-Zc
o, T
- L 1.
Recall that the efficiency of a Carnot Cycle is givenby e ==1— T_
H

This gives our desired result, e<e_ .. Carnot engine is the most efficient!

Extra:engines




Example: AS for some Reversible
Processes 1n an Ideal Gas

One mole of monatomic gas doubles its volume . Calculate the entropy
change if the expansion is done through 1) a reversible isobaric process,
i1) a reversible adiabatic process, and ii1) a reversible isothermal
process.

link to solution

http://complex.gmu.edu/www-phys/phys262/soln/delsexample.pdf
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Example 20.6

1.00kg of water at 0°C is s/lowly (quasi-statically) heated to 100°C.
(no phase change) Calculate AS .

From each of the infinitesimal step, we have d§ = d7Q
T, T,
T
AS — J- a9 _ _[ mc, d
r Lo T
T
=mc, In [—f]
T
B 100+273 (Entropy increases as
=1.00kg (4190J [ kg 'K) ln( 0+273 j water get hotter and water

molecules get more

=4190J /K (0.3121)=+1308J /K >0 agitated.)



Entropy Changes for Different
Processes

5. During Phase Changes (or other 1sothermal
Processes):

(T stays constant during a

dQg 1
AS :I T - T de phase change.)

Q mL
T T

AS =




Example of an Irreversible Mixing Process

Heat exchange between two objects at

- }\ different temperatures
Th

Hot iron (at T,) => water bath (at T,)

~__ (MAKE IT SIMPLE : assume the heat from the hot iron
1s just hot enough to warm the water but not boiling any

off > reaching T < T <T, )

As soon as they are in thermal contact, heat O will spontaneously flow
between them until they reach thermal equilibrium.

I:> This process CANNOT be done quasi-statically!



Example of an Irreversible Mixing Process

However, individually, an infinitesimal dQ (in and
out) of the individual objects can be calculated as a
reversible process...

: R
i N
'—b —dQ | +d0=p
T, —dT T +dT
- ~_
And, the total entropy change for this d7' change 1s positive !
as, . =dsS, +dS_,, eng conservation
_Zmed? + rm,c,dT_ ~dQ + HdQ _ dQ —i+L >0 (since 7, >T)

Note: Individually, S can be calculated by independent surrogate quasi-static processes
raising and decreasing T slowly.



Example of an Irreversible Mixing Process

And,AS,, =AS, +AS,

—-—m. C

T
_ h
T miron Ciron ln (

>0

Tﬁnal

T
final
iron " iron hl( T + mwatercwater ln
h

] + mwater Cwater h’l (

To be more general (not just infinitesimal change),

From 1% Law, we can solve for 7}, ,, from below:

m. C (Tﬁnal—Th)+m C (Tﬁm,—TC)=0

iron ~iron water ~ water
r final j
I,

T final
I,

Although 1t 1s not obvious
from this expression that
AS, >0, we know that it will
be so from our argument on
the previous page !

Let calculate ...



Example 20.10

1.00kg of water at 100°C is place in thermal contact with 1.00kg of water at 0°C.

First, we can solve for 7 :

me, (T =T, )+ me, (To =T.) =0 = T = L ;Tczsooc

Now, AS,, =AS, +AS,

T T
=mc,, In Jinal 4 mc, In final
7, T

~ 1.00kg (4190 / kg - K )| In| 2273 | 1y 50”73)
100+273 273

:419OJ/K(—O.1439+O.1682) =+102J /K >0




Microscopic Interpretation of Entropy

. . Macroscopic Corresponding
Mlcro State VS. Marcro State . state microsc()pic states
Two heads, e .
Macroscopic Corresponding two tails
state microscopic states
Four heads
Three heads,
one tails
Recall: One head,

three tails

Macrostate: a bulk description of a system in terms of
its marcoscopic variables.

Four tails

Copyright @ 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.



Microscopic Interpretation of Entropy

. . Macroscopic Corresponding
Mlcro State VS. Marcro State . state microsc()pic states

Two heads. e

Macroscopic Corresponding two tails

state microscopic states

Four heads

Three heads,

one tails

Recall: One head,

three tails

Macrostate: a bulk description of a system in terms of
its marcoscopic variables.

Microstate: a specific description of the properties of
the individual constituent of the system. Four tails

Copyright @ 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.
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Microscopic Interpretation of Entropy

Observations:

1. For a given macrostate, typically there are many
possible microstates!

(If the # of coins (or molecules) 1s large (~ N,), the
# of microstates corresponding to a particular
macrostate can be astronomically large.)

2. All individual microstates are equally likely.

(Each coin has exactly 50% being head or tail and
each toss 1s independent.)



Microscopic Interpretation of Entropy

Observations:

3. However, for a given macrostate, the # of possible
microstates are different!

-> Since all microstates are equally likely, the
probability for different macrostates 1s different.

4. Some macrostate are much more probable than
others.

(When N~N ,, this disparity can be huge!)
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Microscopic Interpretation of Entropy

Important Observations:

5. The less probable macrostates (all heads or all tails)
correspond to more ordered microstates!

6. The more probable macrostates (50/50 heads and
tails) correspond to the more disordered
microstates.



Microscopic Interpretation of Entropy

These observations motivate the following microscopic
definition of entropy:

S=klnW Boltzmann’s Equation

where W is the # of possible microstates for a given macrostate
and k 1s the Boltzmann constant.

Example (4 coins):
macrostate (all heads) macrostate (3 H & 1 T)
S # of microstates = 1 @& ) # of microstates = 4

S=kInl=0 S=kln4

@ All matched coins (ordered)

unmatched coins (less order)



