
From our previous derivation, the quantity              was from the isothermal 
branch of the infinitesimal Carnot cycle.   Let look at an isothermal expansion 
of an ideal gas microscopically:

Entropy: Disorder
Recall that the 2nd Law of Thermodynamics is a statement on nature’s 
preferential direction for systems to move toward the state of disorder.
Let see how Entropy is a quantitative measure of disorder.

Intuitively, as the gas expands into a bigger 
volume, the degree of randomness for the 
system increases since molecules now have 
more choices (spaces) for them to move around.  
One can associate the increase in randomness to 
the ratio: 

V dV
or

V V



/d Q T

(Recall T stays the same  avg. KE stays the same)



Entropy: Disorder
Since this is an isothermal process, we have the following relation from the 1st Law:

dQ dW 1 dQ dV

T VnR


So, the newly introduced macroscopic variable S (entropy),

dQ
dS

T


is a quantitative measure of the degree of disorder of the system.

f

i

dQ
S

T
  

  /S J K

dS is an infinitesimal entropy change for a reversible process at temperature T.  
For any finite reversible process, the total entropy change S is,

 0dU 

nRT
PdV dV

V
 



Entropy

and 0r

cycle

dQ
dS

T
 dQ

dS
T



This state variable S is called the entropy of the system.

Entropy is macroscopic variable describing the degree of disorder of the system.

  /S J K



Entropy Changes for Different 
Processes

1. General Reversible Processes:

V

i

f

P

f f

r

i i

dQ
S dS

T
   

NOTE: in most applications, 
it is the change in entropy S
which one typically needs to 
calculate and not S itself.

Note: S is a state variable, S is the same for all processes 
(including irreversible ones) with the same initial and final 
states! 



Entropy Changes for Different 
Processes

2. Reversible Cycles:

0r
cycle

cycle cycle

dQ
S ds

T
     

( , ) ( , )i i f fT V T V

1st Law gives,
r

r V

r V

dU dQ dW

dQ dU dW nC dT PdV

nRT
dQ nC dT dV

V

 
   

 

(Note: Thru the Ideal Gas Law, P
is fixed for a given pair of T & V.)

3. Any Reversible Processes (not just cycles) for an 
Idea Gas:



Entropy Changes for Different 
Processes

Dividing T on both sides and integrating,

f f

Vr

i i

nC dTdQ dV
S nR

T T V
     
  

So, we have,

ln lnf f
V

i i

T V
S nC nR

T V

   
     

   



Entropy: Disorder 
(General Reversible Process)

In our discussion of       for an ideal gas through a general reversible 
process, we just derived the following relation,

r
V

dQ dT dV
dS nC nR

T T V
  

S

dT
S

T
  

Thermal agitations

dV
S

V
  

Availability of space



4. Calorimetric Changes:

Entropy Changes for Different 
Processes

f f

i i

dQ mcdT

dQ mcdT
S

T T



   

If c is constant within temperature range, ln f

i

T
S mc

T

 
   

 

 f
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c T dT
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T
  If         is a function of T, c T



Entropy Changes for Different 
Processes

5. During Phase Changes (or other isothermal 
Processes):

1dQ
S dQ

T T
   

(T stays constant during a 
phase change.)

Q mL
S

T T
  



Entropy Changes for Different 
Processes
6. Irreversible Processes:

Although for a given irreversible process, we cannot write  
dS = dQr/T, S between a well defined initial state a and final state b 
can still be calculated using a surrogate reversible process connecting 
a and b.  (S is a state variable!) 

Example 20.8: (adiabatic free expansion of an ideal gas)

Initial State a: (V,T) Final State b: (2V,T)

Since Q=W=0, U=0.
For an ideal gas, this 
means that T=0 also.

Although Q=0, but S 
is not zero!

 ,V T

 2 ,V T



 ,V T

 2 ,V T

S in an Adiabatic Free Expansion
Important point: Since S is a state variable, S is the same for 
any processes connecting the same initial a and final b states.

In this case, since T does not change, we can use an surrogate isothermal 
process to take the ideal gas from state a (V,T) to state b (2V,T) to calculate S.

Applying our general formula to the surrogate 
isothermal expansion,

ln lnf f
V

i i

T V
S nC nR

T V

   
     

   

we have,

lnV

T
S nC

T
    
 

2
ln ln 2 5.76 /

V
nR nR J K

V
    
  (n=1)

Surrogate 
Isothermal Expansion

 ,V T

 2 ,V T



2nd Law (Quantitative Form)

“The total entropy (disorder) of an isolated system in any 
processes can never decrease.”

0

( 0 ; 0 )

tot sys env

tot tot

S S S

S reversible S irreversible

     

   

“Nature always tends toward the macrostate with the highest S
(disorder) [most probable] in any processes.”

system

environment
Q

W



2nd Law (S > 0 & Clausius Statement)
Clausius Statement: Heat can’t spontaneously transfer from TC to TH.

We will prove this by contradiction using Stot > 0.

Assume the contrary,
cold hot

Q

H
H

C
C

Q
S

T

Q
S

T


 


 

(heat absorbed into TH)

(heat released by TC)

tot
H C

Q Q
S

T T

 
  

Not Possible!
(violated Stot > 0)

 H LT T

(with the explicit signs, 
|Q| is taken to be +.)

1 1
tot

H C

S Q
T T

 
   

 
0



2nd Law (S > 0 & Kelvin-Planck 
Statement)

Kelvin-Planck Statement: No heat engine can convert heat from TH

completely into W.

We will prove this by contradiction again using the Stot > 0.

Assume the contrary,

|QH|

0

0 (no heat exchange)

engine

H
H

H

C

S

Q
S

T

S

 


 

 

So, 0H
tot engine H C

H

Q
S S S S

T


        

Not Possible!
(again violated Stot > 0)

(engine operates in a cycle)



2nd Law (S > 0 & Carnot Theorem)
For any reversible heat engines,

C H
tot engine env

C H

Q Q
S S S

T T
      

0engine

C H
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Q Q
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 

 
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C H H H

Q Q Q T
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T T Q T
 

2nd Law

0



2nd Law (S > 0 & Carnot Theorem)

Consider the efficiency of a heat engine in general,

1 C

H

Q
e

Q
 

Applying the inequality from the previous slide,

1 .C
carnot

H

T
e

T
 Recall that the efficiency of a Carnot Cycle is given by 

1 1C C

H H

Q T
e

Q T
   

This gives our desired result,                    Carnot engine is the most efficient!.carnote e

Extra:engines

C C

H H

Q T

Q T




Example: Sfor some Reversible 
Processes in an Ideal Gas 

One mole of monatomic gas doubles its volume .  Calculate the entropy 
change if the expansion is done through i) a reversible isobaric process, 
ii) a reversible adiabatic process, and iii) a reversible isothermal 
process.

link to solution

http://complex.gmu.edu/www-phys/phys262/soln/delsexample.pdf



Example 20.6

1.00kg of water at 0oC is slowly (quasi-statically) heated to 100oC.  
(no phase change)   Calculate        .

 

 

ln

100 273
1.00 4190 / ln

0 273

4190 / 0.3121 1308 / 0

f f

i i

T T

w

T T

f
w

i

mc dTdQ
S

T T

T
mc

T

kg J kg K

J K J K

  

 
  

 
     

  

 

From each of the infinitesimal step, we have 

S

dQ
dS

T


(Entropy increases as 
water get hotter and water 
molecules get more 
agitated.)



Entropy Changes for Different 
Processes

5. During Phase Changes (or other isothermal 
Processes):

1dQ
S dQ

T T
   

(T stays constant during a 
phase change.)

Q mL
S

T T
  



Example of an Irreversible Mixing Process

Heat exchange between two objects at 
different temperatures

Hot iron (at Th)  water bath (at Tc)

(MAKE IT SIMPLE : assume the heat from the hot iron 
is just hot enough to warm the water but not boiling any 
off reaching                          )

Th

Tc

As soon as they are in thermal contact, heat Q will spontaneously flow 
between them until they reach thermal equilibrium.

This process CANNOT be done quasi-statically!

c final hT T T 



Example of an Irreversible Mixing Process

However, individually, an infinitesimal dQ (in and 
out) of the individual objects can be calculated as a 
reversible process…Th

Tc

hT dT cT dT
dQ dQ

And, the total entropy change for this  dT change is positive ! 

Note: Individually, S can be calculated by independent surrogate quasi-static processes 
raising and decreasing T slowly.

tot hot colddS dS dS 

1 1
0i i w w

h c h c h c

m c dT m c dT dQ dQ
dQ

T T T T T T

    
        

 
 since h cT T

eng conservation



To be more general (not just infinitesimal change), 

From 1st Law, we can solve for Tfinal from below:

Example of an Irreversible Mixing Process

Th

Tc

ln ln

ln ln

0

h

final

tot h c

final final
iron iron water water

h c

final
iron iron water water

c

S S S

T T
m c m c

T T

TT
m c m c

T T

    

   
    

   
   

        




    0iron iron final h water water final cm c T T m c T T   

And,

Although it is not obvious 
from this expression that 
Stot >0, we  know that it will 
be so from our argument on 
the previous page ! 

Let calculate …



Example 20.10

1.00kg of water at 100oC is place in thermal contact with 1.00kg of water at 0oC.

    0 50
2

oh c
w final h w final c final

T T
mc T T mc T T T C


      

First, we can solve for Tf  :

 

 

ln ln

50 273 50 273
1.00 4190 / ln ln

100 273 273

4190 / 0.1439 0.1682 102 / 0

tot h c

final final
w w

h c

S S S

T T
mc mc

T T

kg J kg K

J K J K

    

   
    

   
                

     

Now,



Microscopic Interpretation of Entropy
Microstate vs. Marcrostate:

Recall:

Macrostate: a bulk description of a system in terms of 
its marcoscopic variables.

Microstate: a specific description of the properties of 
the individual constituent of the system.



Microscopic Interpretation of Entropy
Microstate vs. Marcrostate:

Recall:

Macrostate: a bulk description of a system in terms of 
its marcoscopic variables.

Microstate: a specific description of the properties of 
the individual constituent of the system.



Microscopic Interpretation of Entropy
Observations:
1. For a given macrostate, typically there are many 

possible microstates! 

(If the # of coins (or molecules) is large (~ NA), the 
# of microstates corresponding to a particular 
macrostate can be astronomically large.)

2. All individual microstates are equally likely.

(Each coin has exactly 50% being head or tail and 
each toss is independent.)



Microscopic Interpretation of Entropy
Observations:
3. However, for a given macrostate, the # of possible 

microstates are different! 

 Since all microstates are equally likely, the 
probability for different macrostates is different.

4. Some macrostate are much more probable than 
others.

(When N~NA, this disparity can be huge!)



Microscopic Interpretation of Entropy

Important Observations:
5. The less probable macrostates (all heads or all tails) 

correspond to more ordered microstates!

6. The more probable macrostates (50/50 heads and 
tails) correspond to the more disordered 
microstates.



Microscopic Interpretation of Entropy

lnS k W

where W is the # of possible microstates for a given macrostate 
and k is the Boltzmann constant.

These observations motivate the following microscopic 
definition of entropy:

Example (4 coins):

macrostate (all heads)
# of microstates = 1

ln1 0S k 

All matched coins (ordered)

macrostate (3 H & 1 T)
# of microstates = 4

ln 4S k

unmatched coins (less order)

Boltzmann’s Equation


