
Heat Engines
 Definition: A device that converts a 

given amount of heat into 
mechanical energy.

 All heat engines carry some working 
substance thru a cyclic process:

Engine releases residual heat to cold 
reservoir at TC

Mechanical work is done by engine

Engine absorbs heat from hot 
reservoir at TH

Dstering



Work Done by a Heat Engine
The heat engine works in a cyclic process,

0U 

1st Law gives, 0netU Q W   

netQ W

where, net H C H CQ Q Q Q Q   

explicit  signs for heats



Efficiency for a Heat Engine
 Thermal Efficiency e is defined as the ratio of the 

mechanical energy output to the heat energy input,
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

what you get out

what you put in


Substituting                    , we have
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using explicit signs here
H CW Q Q 



A “perfect” (100% efficient) heat engine

|QH|

1perfecte   and 

A “perfect” heat engine means 100% 
efficiency (e=1).  This means that

1 1 means 0C
C

H

Q
e Q

Q
   

All heat absorbed from reservoir TH is 
converted into mechanical work W.  
No residual heat is released back. 

The Kelvin-Planck’s statement of the 2nd Law does not allow this !

1realistice  Ddrinking bird



Refrigerators
Refrigerators are basically heat engine running in reverse.

 Heat from inside the refrigerator (cold T reservoir) is absorbed and released 
into the room (high T reservoir) with the input of mechanical work.

warm



Refrigerators

what you get

what you put in
C C

H C

Q Q
K

W Q Q
  



Coefficient of Performance for a Refrigerator

From 1st Law,    0cycle C H

H C

U Q Q W

Q Q W

     

 

(Note: we have put in the explicit signs according to our sign convention.)
 |QC| (absorbed)  positive
 |QH| (released)  negative
 |W| (work is done on working substance by motor)  negative

explicit signs



A “perfect” Refrigerator
C C

H C

Q Q
K

W Q Q
 



A “perfect” refrigerator means (       ).  
This means that

0H CQ Q or W 

No mechanical work W is needed to 
transfer heat from the cold reservoir 
to the hot reservoir. 

The Clausius’s statement of the 2nd Law does not allow this !

realisticK  

K  



2nd Law, Disorder, & Available Energy

Two Forms of Energy in any Thermal Process:

Internal Energy Macroscopic Mechanical Energy

In the Kinetic-Molecular Model, 
this consists of the KE and PE 
associated with all the randomly
moving microscopic molecules.

The piston’s motion in an 
automobile engine results from the
overall coordinated macroscopic 
motion of the molecules.

(One typically cannot control the 
individual random motions of all 
these molecules.)

(Energy associated with this 
coordinated [ordered] motion can 
be used for useful work.)



2nd Law, Disorder, & Available Energy

In a natural process (a block sliding to a stop),

e.g. v
f

slightly warmer 
due to friction

stopped

The coordinated motion of the block is converted into the slightly more
agitated random motions of the molecules in the block and table.

Macroscopic Mechanical Energy (KE of the block) is converted into 
Internal Energy through heat as a result of friction.

before after



2nd Law, Disorder, & Available Energy
Now consider the possibility of reverse situation… do we typically see a 

group of randomly moving molecules all push a block in a coordinated 
fashion?

The 2nd Law of Thermodynamics is basically 
a statement limiting the availability of internal 
energy for useful mechanical work.

However, this does not mean that internal energy is not accessible. An Heat 
Engine is exactly the machine that can perform this conversion but only 
partially.

NO. In other words, one typically cannot completely convert the internal 
energy of a system back into macroscopic mechanical energy.



The Carnot Cycle (Most Efficient Heat Engine)

 A reversible cycle described by Sadi Carnot in 
1824.

 The Carnot Theorem gives the theoretical limit
to the thermal efficiency of any heat engine.

 The Carnot cycle consists of:
 A cycle operating between two temperatures:

 2 reversible isothermal processes in which  

 2 reversible adiabatic processes in which 

 An Ideal Gas as its working substance 

andH CT T

H CT T

Q 



Heat Engines
 Definition: A device that converts a 

given amount of heat into 
mechanical energy.

 All heat engines carry some working 
substance thru a cyclic process:

Engine releases residual heat to cold 
reservoir at TC

Mechanical work is done by engine

Engine absorbs heat from hot 
reservoir at TH

Dstering



Steps of the Carnot Cycle animation
http://galileoandeinstein.physics.virginia.edu/more_stuff/flashlets/carnot.htm



Steps of the Carnot Cycle animation
http://galileoandeinstein.physics.virginia.edu/more_stuff/flashlets/carnot.htm



Details on the Carnot Cycle

The isothermal expansion (ab) and compression (cd):

0isothermalU  (T is constant and U(T) is a function 
of T only for an Ideal Gas.)

ln b
H ab H

a

V
Q W nRT

V

 
   

 
(ab : isothermal expansion)
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(cd : isothermal compression)



Details on the Carnot Cycle

(by definition)

The adiabatic expansion (bc) and compression (da):

0adiabaticQ 

From Section 19.8, we learned that 1 for adiabatic processes.TV const  

(bc: adiabatic expansion)1 1
H b C cT V T V  

(da: adiabatic compression)1 1
H a C dT V T V  

Dividing these two equations gives, 

b c

a d

V V

V V




Efficiency of the Carnot Cycle

From definition, we have 1 C

H

Q
e

Q
 

Using our results for QC and QH from the isothermal processes, 

 
 
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Then, from the adiabatic processes, we have 
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(Carnot Cycle only) 

(T must be in K)



Efficiency of the Carnot Cycle

1 C
carnot

H

T
e

T
  (Carnot Cycle) 

General Comments:
 Higher efficiency if either TC is lower and/or TH is higher.
 For any realistic thermal process, the cold reservoir is far 

above absolute zero, i.e., TC > 0.
 Thus, a realistic e is strictly less than 1!  (No 100% 

efficient heat engine)
 Realistic heat engines must take in energy from the high T

reservoir for the work that it produces AND some heat 
energy must be released back to the lower T reservoir.

(Kelvin-Planck’s Statement)
skip



Internal Combustion Engine
The Otto Cycle
A fuel vapor can be compressed, then detonated to rebound 
the cylinder, doing useful work.

animation
http://auto.howstuffworks.com/engine1.htm



The Otto Cycle

a  b b, c c  d

2 ( ) 0H V c bQ U nC T T    

4 ( ) 0C V a dQ U nC T T    

r is the compression ratio (8 to 13)

intake
exhaust

intake exhaust

For the two constant V processes: 2 and 4, 
we can calculate,



The Otto Cycle

Applying the definition of efficiency,

 
 

1 1 1V a dC a d

H V c b c b

nC T TQ T T
e

Q nC T T T T

 
     

 

Now, we can utilize the two adiabatic processes: 1 and 3,

1 1
a a b bT V T V   and 1 1

c c d dT V T V  

  1 1
a bT rV T V

     11
c dT V T rV

  

1
a bT r T   1

c dT T r 



The Otto Cycle

Substituting Tb and Tc into the efficiency equation, we have,

 1 1 1
1 1 1a d a

d

a

c b da

d d
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T T T T T T
e

T T T r T r T T r    

  
    

  


1

1
1e

r 
 

Using a typical value for the compression ratio r = 8 and 
= 1.40 gives,

0.56 (or 56%)e 
Note: This is a theoretical value. 
Realistic gasoline engine typically 
has e ~ 35%.



The Diesel Cycle

Key difference:
 No fuel in cylinder at the beginning of the 

compression stroke (process 1)
 Fuel is injected only moments before 

ignition in the power stroke
 No fuel until the end of the adiabatic 

compression can avoid pre-ignition
 Compression ratio r value can be higher (15 

to 20)
 Higher temperature can be reached during 

the adiabatic compression
 Higher e and no need for spark plugs

Dsteam engine



Entropy
Recall from a Carnot Cycle, we have derived the following relationship:

C C

H H

Q T

Q T
 0H C

H C

Q Q

T T


 

Formally, we can rewrite this as,

0
cycle

Q

T
 (We have absorbed the explicit 

sign back into the variable Q.) 

where Q represents the heat absorbed/released along the isotherm at temp T. 



Entropy

Any reversible cycles can be 
approximated as a series of 
Carnot cycles !

Now consider any reversible cycles…



Entropy

This suggests that the following generalization to be true for any reversible 
cycles,

0r

cycle

dQ

T


where, 
dQr is the infinitesimal heat absorbed/released by the system at an 

infinitesimal reversible step at temp T. 

denotes the integration evaluated over one complete cycle.
cycle




Entropy

We have seen this property previously,

0
cycle

dU  Changes in the internal energy U over a 
closed cycle is zero!

This is a consequence of the fact that U is a state variable and dU for any 
processes depends on the initial and final states only.

Thus the result                     indicates that there is another state variable S
such that,

0r

cycle

dQ

T


and 0
cycle

dS dQ
dS

T


This new state variable S is called the entropy of the system.


