Special Processes

6. Adiabatic (no heat exchange, O = 0):

AU=0-W —=— AU=-W

Maximum
Initial volume compression
1
: y N & oV, =V
Note: The compression N 2 1571

stroke 1n an internal
combustion engine 1s
quick and it can be
well approximated by
an adiabatic process.

(will come back to this example later)




Summary

P

Four Reversible (Quasi-static) | | lo)\\\\ -
Proccessces: 5T,
1. Adiabatic (O=0) ‘ Isothermal

- . Y Ti=1T,
2. Isochroic (AV=0)

T : AN
3. Isobaric (AP=0)
4. Isothermal (AT=0) 5[ \ v

Isochoric  Adiabatic
T, <_Ta . T, <T,

15t Law for infinitesimal changes: dU =dQ—dW =dQ — PdV
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C, and C, for an Ideal Gas

p

Two different ways to change d7=T,- T :

Iy, U,

Process a: Constant V'

AT—>T+dT

M

Container of

fixed volume n moles of

ideal gas

Heat added: dQ,

rson Education, Ine., publishing s Pearson Addison Wesley.

y dQ, = nC,dT




C, and C, for an Ideal Gas

D

T, U, For the same dT :

1), U, Process b: Constant P

NA T— T+ dT
Constant-volume Pision mmotion A

process, gas does
no work: Q= AU

Constant-pressure movable piston

process, gas does that applies
work: Q,= AU + W constant pressure

I

Container with

n moles of
1deal gas

Heat added: dQ,

7 dQ, =nC,dT

Which is bigger: O, <or>Q,, C <or>C,?




C, and C, for an Ideal Gas

First let consider the constant volume process (a):

» No work done by/on gas 2 W =10
» Then, 1% law gives,

dU =dQ =nC dT

Now, for the constant pressure process (b) with the same dT:

» We have dW = PdV and dQ, = nC,dT (by definition)
» Substitute them into the 15t law again gives,

dU, = dQ, —dW =nC dT — PdV
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C, and C, for an Ideal Gas

Taking the differential on both sides of the Ideal Gas Law, we
have,

d(PV)=nRdT nR 1s constant with n fixed
With P constant, this gives,
d(PV)= PdV =nRdT
Substitute this into the last Eq on the previous page, we have:
dU, =nC dT —nRdT
=n(C, - R)dT
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C, and C, for an Ideal Gas

Important point: Since U for an 1deal gas 1s a function of 7 only
and process a and process b have the same d7 =T, — T,

dU_ =dU,

[\

> nC.dT =n(C,—R)dT

Finally, this gives, C,=C,+R (True for all Ideal Gases)

(Note: T

his fact 1s very useful. Basically, one can use dU = nC dT

to calculate the internal energy change 1n an 1deal gas for any
given d1 whether V is constant or not).
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The Ratio of Heat Capacities

0 A useful ratio ycan be defined:

Recall that for a monoatomic Ideal Gas, C,6 = %R

so that, szCv+R=§R and 7/=§=1.67

>

For a diatomic 1deal Gas, C, = > R

and, Cp=Cv+R=%R and 7/:%:1_40



Adiabatic Processes for an Ideal Gas

1
] Isothermal > P ~—
ﬁ AT =0 I{
Adiabatic > P ~—
..An adiabatic curve at any Q=0 V7
Pa ===\~ point 1s always steeper (7>1)

than the isotherm passing
through the same point.

Start from definition, d0=0

for any adiabatic process,
Ppr—=—=—q=—==-
Then, from 15t Law, we have,

%
dU =—-dW =—-PdV

adiabatic expansion = T drops



Adiabatic Processes for an Ideal Gas

Now, we use the “trick’ that for an 1deal gas, dU 1s the same for all

processes with the same dT = T,— T,. As stated previously, we can
calculate dU using,

dU =nC dT

Putting this into the 1%'law JU = —dW gives,

dVv

nRT
nC dT =—-PdV = -
I V
(In the last step, we used
Ideal Gas Law: PV=nRT)



Adiabatic Processes for an Ideal Gas

Rearrange terms, we have,

dT R dV
T CV

=0

Using the relations for the molar specific heats,

Then, we have,



Adiabatic Processes for an Ideal Gas

Integrating this equation, we have,

J-— +(y — I)J-— = constant

In7+(y—1)InV = constant
In (T V7’ _1) = constant

> TV’ = constant Note: T has to be in K.
Using the Ideal Gas Law again, we can replace T'with P—Z :
n
PV
> B — V7 =constant —> PV’ =constant
n

(alternate form)



Work 1n an Adiabatic Process (Ideal Gas)

We know that, dW =—-dU (dQ =0)

Using the same “trick” on dU, we can calculate the work done
in an adiabatic process if we know the changes 1n temperature.

dW =—-dU =-nC dT
W =-nC,(T,~T,)

or  W=-—(EV,~R\)



Examples

0 Fire Piston (demo) Fire ison Hisory

http://en.wikipedia.org/wiki/Fire piston

0 Example 19.68 (Comparison of processes)

Fire piston calculations P
http://complex.gmu.edu/www-phys/phys262/soln/fire_piston.pdf

Example 19.68 calculations
http://complex.gmu.edu/www-phys/phys262/soln/ex19.66.pdf

Given initial state £,V/;, —— final

3 diff ways: a) Isothermal
b) Adiabatic
c) Isobaric




Adiabatic Expansion (reversible &
nonreversible)

0 Reversible adiabatic expansion (quasi-static) :

»  Expanding gas push piston up = work is
done by gas 2> W > 0 > AU <0 (energy
flows out of gas)

» For an Ideal Gas, U is a function of 7 only,

> So, AU <0 also implies AT <0 (temperature
drops!)

0 Adiabatic free expansion (non-quasi-static
/nonreversible):

»  Gas expands into vacuum = no work done W=0
»  Adiabatic 2 0=0

> 1stlaw gives AU =0

»  Uremains unchanged and 7'is a constant!
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