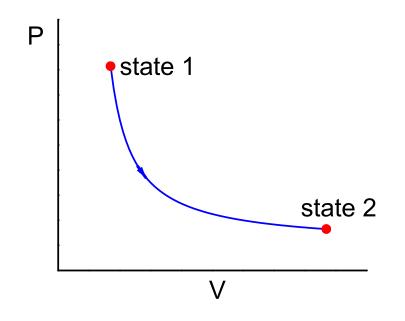
Physics 262/266

George Mason University

Prof. Paul So


Chapter 19: The 1st Law of Thermodynamics

- Heat, Work, and
 Thermodynamic Processes
- Internal Energy and the 1st
 Law of Thermodynamics
- Types of Thermodynamic
 Processes
- Adiabatic Processes
- □ More on Heat Capacities

Thermodynamic Systems

- A Thermodynamic System: A collection of objects (considered as one "system") that may have potential to exchange energy (heat AND work) with each others and its surrounding.
- System States & Thermodynamic Processes:

- State of a thermodynamic system is characterized by a set of marcoscopic variables (*P*, *V*, *T*, *n*) and, it can be visualized as a point

 in the PV diagram.
- A thermodynamic system changes from one state (1) to another state (2) through a thermodynamic process indicated by the blue curve/path in the PV diagram.

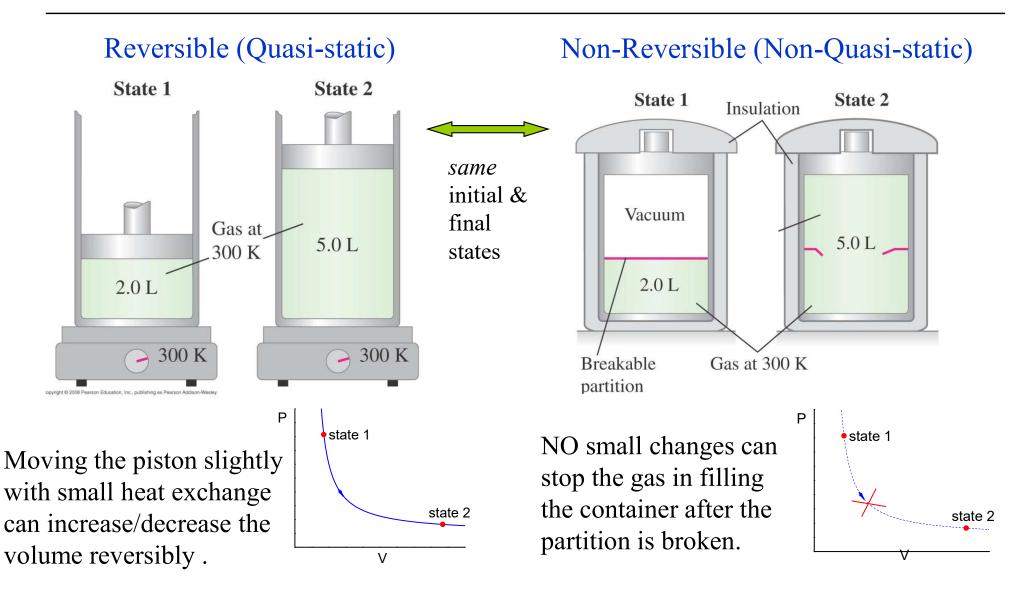
Thermodynamic Systems

Notes on thermodynamic processes:

- Different processes will have different paths on the PV graph
- Thermodynamic *states* can only be specified if the system is in a *thermal equilibrium*!

 \rightarrow Every (macroscopic) subparts of the system should have the same values of

P,*T*,*V*,*n*, etc.

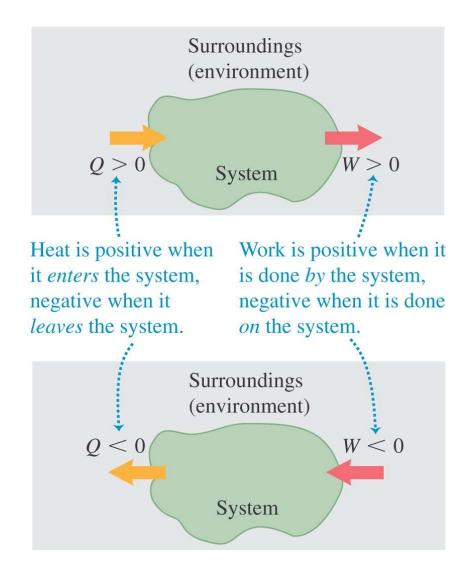

> For *n* fixed in PV = nRT in an Ideal Gas, we only need 2 out of 3 state variables (P,V,T) to specify a state uniquely!

Thermodynamic Systems

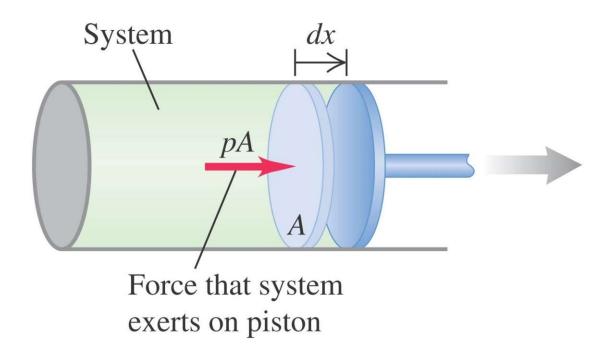
□ Notes on thermodynamic processes:

- A path for a thermodynamic process can only be represented in the PV diagram as a curve if the process is *reversible* (quasi-static).
- A *quasi-static* process can be thought of as a sufficiently *slow* (still fast in macroscopic time) process such that the system is approximately *near equilibrium* at each step.

Reversible vs. Non-Reversible Processes



Energy Transfer in a Thermodynamic System

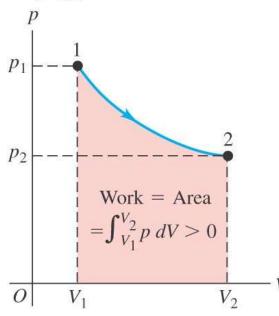

Heat (Q): A thermodynamic system can *absorb* or *release* heat during a thermodynamic process.

Work (*W*): Work is either *done on* or *done by* a system during a thermodynamic process.

Note: Play attention to the sign conventions for *Q* and *W*!

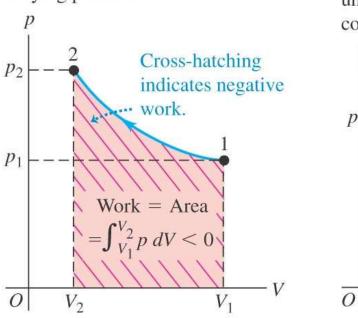
Work Done by a Gas

The system (the gas) exerts a force (F = pA)on its surrounding (the piston) through a distance dx.

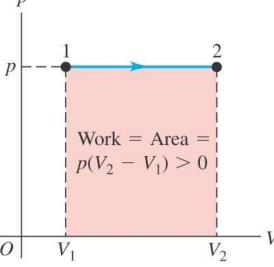

The infinitesimal work done by the system dW is given by: dW = F dx = PA dx = P dV

Work Done by a Gas

 p_1


For a finite change in the volume from V_1 to V_2 , the total work done is given by integrating the differential:

(a) *pV*-diagram for a system undergoing an expansion with varying pressure



$$W = \int_{V_1}^{V_2} P dV$$

(b) *pV*-diagram for a system undergoing a compression with varying pressure

(c) *pV*-diagram for a system undergoing an expansion with constant pressure

Work Done by a Gas

Case 1: **isochoric** processes (*V* is constant, *dV*=0)

W = 0

Case 2: isobaric processes (P is constant)

$$W = P(V_2 - V_1)$$

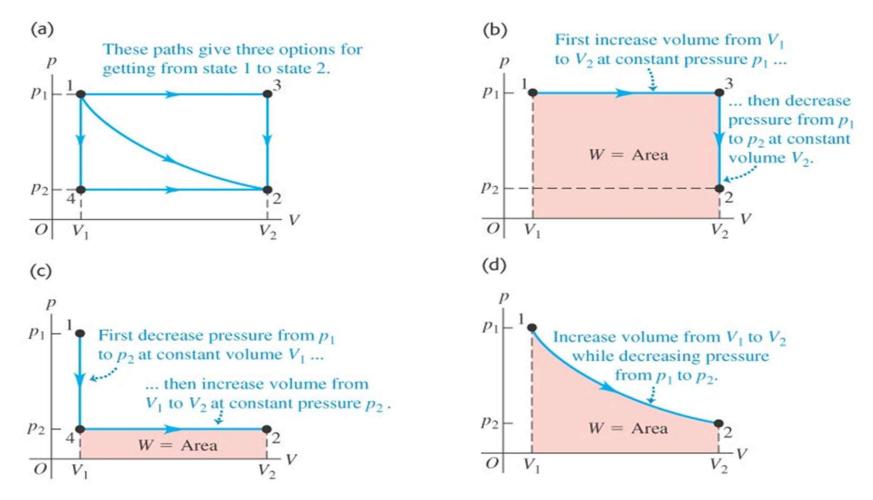
Case 3: isothermal processes (T is constant) Example 19.1

Starting with
$$W = \int_{V_1}^{V_2} P dV$$

Using the Ideal Gas law: *PV*=*nRT*

Work Done by an Isothermal Process

We have,
$$W = \int_{V_1}^{V_2} \frac{nRT}{V} dV$$


T is constant and we can pull it out of the integral together with the other two constants nR (fixed amount of gas),

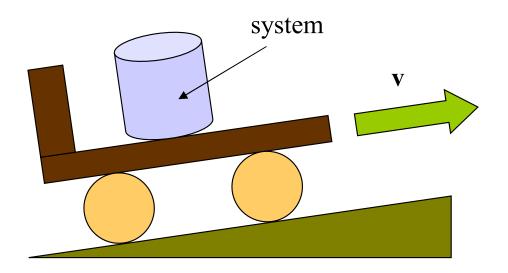
$$W = nRT \int_{V_1}^{V_2} \frac{dV}{V} = nRT \ln\left(\frac{V_2}{V_1}\right)$$

For *T* constant, we also have $P_1V_1 = P_2V_2$ or $\frac{V_2}{V_1} = \frac{P_1}{P_2}$

So, we can also write,
$$W = nRT \ln\left(\frac{P_1}{P_2}\right)$$

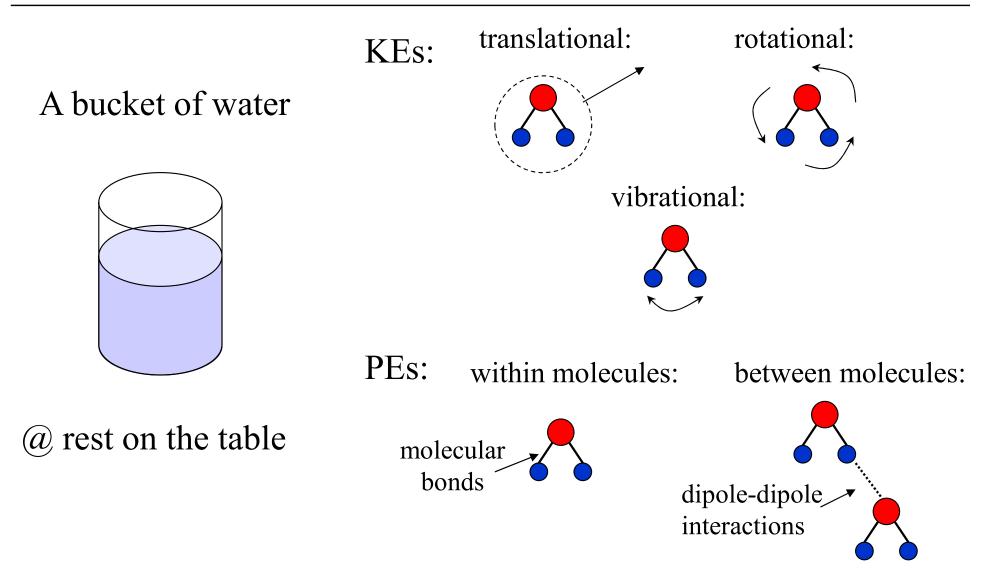
Work Done is Path Dependent

Work done by a gas is *different* depending on path taken even though the starting and ending states are the same for all these processes.

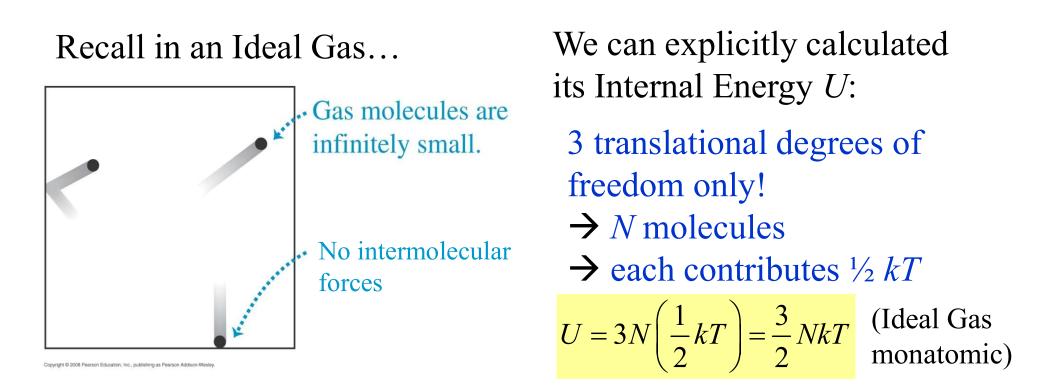

Heat Absorbed/Release is also Process Dependent

Process 2 (free expansion) Process 1 (isothermal expansion) System does no work; no heat enters or System does work on piston; hot plate leaves system (W = 0 and Q = 0). adds heat to system (W > 0 and Q > 0). State 1 State 1 State 2 State 2 Insulation Vacuum Gas at 5.0 L 5.0 L 300 K 2.0 L 2.0 L 300 K 300 K Breakable Gas at 300 K partition Copyright @ 2008 Pearson Education, Inc., publishing as Pearson Addiso

Starting and ending states are the same for *both* processes!

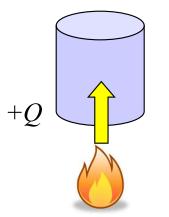

Internal Energy (U)

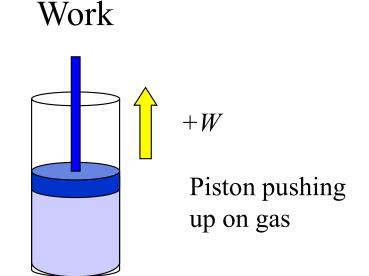
Internal Energy (*U*): the total amount of energy (KE + PE) *intrinsic* to the system associated with all its microscopic components when viewed in a reference frame at rest with the object.



The mechanical KE and PE associated with the motion of the *entire* system are NOT parts of the internal energy U of the system.

Internal Energy for an Ideal Gas (monatomic)




The Internal Energy for an Ideal Gas *U* is a function of *T* ONLY! (Experimentally, this is also shown to be the case for most diluted real gases!)

Energy Exchanges in a Thermal System

We have seen that both heat and work can change the internal energy of the system. In particular,

Heat

Heat enters the system, *U* increases ($\Delta U > 0$) *Work* done by the system, *U* decreases ($\Delta U < 0$)

The 1st Law of Thermodynamics

Putting these two mechanisms together, we can combine them into one mathematical statement for the *change* in the **internal energy** U (total energy) in any processes,

$$\Delta U = Q - W \qquad (1^{\text{st}} \text{ Law of Therm.})$$

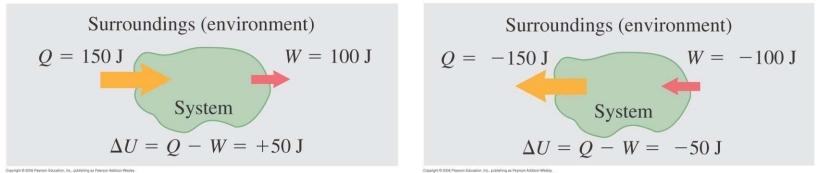
This is a generalization of the principle of conservation of energy to include energy transfer through heat as well as through mechanical means (work).

The 1st Law of Thermodynamics

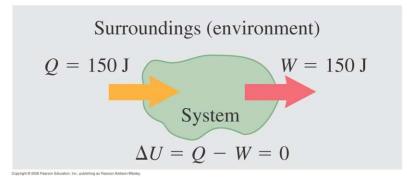
Important Property of U

Although both *Q* and *W* are path/process dependent...

→ U is the total internal energy of the system. It is a state variable and it depends on the initial and final states only. Specially, for an Ideal Gas, U is a function of T only.


 $\rightarrow \Delta U$ is *independent of path* since ΔU represents the change in the total internal energy of the system

1st Law of Thermodynamics


ΔU can be positive, negative, and zero.

More heat is added to system than system does work: Internal energy of system increases.

More heat flows out of system than work is done: Internal energy of system decreases.

Heat added to system equals work done by system: Internal energy of system unchanged.

Special Processes

1. Isolated Systems (no interactions with surrounding) Since Q = W = 0, $\Delta U = 0$

U remains a constant in an isolated system.

2. Cyclic Processes (starting state = end state) Since U is a *state variable*, $\Delta U = 0$. 1st Law gives, $\Delta U = Q - W = 0$

Q = W (= area encircled by curve)

V

Special Processes

3. Isochoric (constant V):

NO volume change \rightarrow NO work (W=0)

$$\Delta U = Q - W \quad \xrightarrow{W=0} \quad \Delta U = Q$$

4. Isobaric (constant P)

Since *P* is a constant, dW = PdV can be integrated easily and gives,

$$W = P(V_2 - V_1)$$
$$\Delta U = Q - P(V_2 - V_1)$$

Example: A Thermodynamical Cycle

Example 19.4(2)

 $8.0 imes 10^4$ Pa Find: $\Delta U_{ab} = ?$ $3.0 \times 10^4 \,\mathrm{Pa}$ a C $\Delta U_{abd} = ?$ $Q_{acd} = ?$ V $O | 2.0 \times 10^{-3} \,\mathrm{m}^3$ $5.0 \times 10^{-3} \, \text{m}^3$

Given: $Q_{ab} = 150 \text{ J}$ $Q_{bd} = 600 \text{ J}$

note

http://complex.gmu.edu/www-phys/phys262/soln/ex19.4.pdf

Special Processes

5. Isothermal (constant T)

For an Ideal Gas, U(T) depends only on $T \rightarrow \Delta U = 0$!

$$\Delta U = Q - W \quad \xrightarrow{\Delta U = 0} \quad Q = W$$

Recall, work done by an isothermal process in an Ideal Gas:

$$W = \int_{V_1}^{V_2} P dV = \int_{V_1}^{V_2} \frac{nRT}{V} dV = nRT \ln\left(\frac{V_2}{V_1}\right)$$

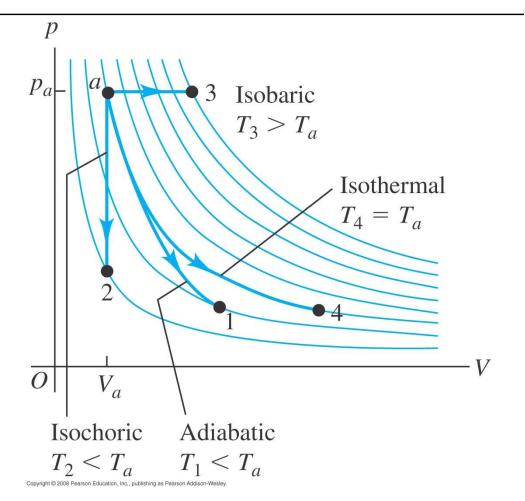
Special Processes

6. Adiabatic (no heat exchange, Q = 0):

 $\Delta U = Q - W \quad \xrightarrow{Q=0} \quad \Delta U = -W$

Note: The compression stroke in an internal combustion engine is quick and it can be well approximated by an *adiabatic* process. (will come back to this example later)

ning as Pearson Addison


Maximum

D_{fire piston}

Summary

Four Reversible (Quasi-static) processes:

- 1. Adiabatic (Q=0)
- 2. Isochroic ($\Delta V=0$)
- 3. Isobaric ($\Delta P=0$)
- 4. Isothermal ($\Delta T=0$)

1st Law for infinitesimal changes:

$$dU = dQ - dW = dQ - PdV$$