
Typical Usage for the Ideal Gas Law
 For a fixed amount of gas (nR=const)
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 So, if we have a gas at two different states 1(before) and 2 
(after), their state variables are related simply by:

We can use this relation to solve for any unknown variables 
with the others being given.



Example 18.2
In an automobile engine, a mixture of air/gasoline is 
being compressed before ignition.

 Typical compression ration 1 to 9

 Initial P = 1 atm and T = 27 oC 

Find the temperature of the compressed gas if we are 
given the pressure after compression to be 21.7atm.

note

http://complex.gmu.edu/www-phys/phys262/soln/ex18.2.pdf



The Ideal Gas Law (graphical view)
P,V,T relationship in the Ideal Gas Law can be visualize 
graphically as a surface in 3D.

P
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PV Diagrams

 2D projections of the 
previous 3D surface.

 Evolution of a gas at 
constant T will move 
along these curves 
called isotherms.

Gives P vs. V at a various T:
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Phases of Matter (reading phase diagrams)

video

https://www.youtube.com/watch?v=ei8V5cWZebU



Critical Point and Liquid-Gas Coexistence

gas

liquid

fluid

liquid-gas coexistence



Kinetic-Molecular Model of an Ideal Gas

 An example of a successful theoretical linkage between the 
“micro” and “macro” descriptions for an ideal gas.

 Explicit expressions of P & T in terms of microscopic 
quantities!

Macroscopic description 
of gases

P, V, T
Ideal Gas Law

Microscopic description 
of gas molecules

v, p, F, KE
Newton’s EqsKinetic Theory



Kinetic Theory (assumptions)
 A very large # N of identical molecules each with mass m in a container 

with volume V

“Fraction of molecules 
moving in a given range of 
speeds stays the same”

f(v)

speed (v)

 Molecules behaves as point particles:
 Molecule sizes << avg separate bet particles & dim of container

 Molecules moves according to Newton’s laws and they move randomly 
with equal probability in all directions and with a fixed distribution f(v)
(histogram) of speed v

 Molecules interact only with the walls thru elastic collisions and the 
container walls are perfectly rigid and infinitely massive
  both KE and momentum are conserved



Kinetic Theory (model)

Idea Gas in a box with V=AL
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-vy
vf
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Left Wall
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after collision
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Pressure Exerted by an Ideal Gas
“Pressure on the left wall due to 

molecular collisions”

1. Momentum change in x-dir by a 
molecule moving to the left at vi:
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2. Duration, t, that this molecule 

takes (on average) to collide with 
the left wall again (diluted gas),



Pressure Exerted by an Ideal Gas

4. With N molecules, total force on wall in t:
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 Fixed Invariant distribution implies           will be the same 
when experiment is repeated.  
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3. Force exerted by this molecule on the left wall:



Pressure of an Ideal Gas
5. Random direction (isotropic) assumption:

(vx
2)av= (vy

2)av= (vz
2)av (x, y, z are the same)

Since                                   , we have (v2)av= 3(vx
2)av

This gives,
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6. Finally, the pressure on the wall is:
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Pressure of an Ideal Gas
Rewriting, we have

 This tells us that P inside a container with a 
fixed V:
 is proportional to the # of molecules N

 is proportional to the avg. translational KE of 
molecules

(These are microscopic properties of the gas.)
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(avg trans. KE per molecule)



Molecular Interpretation of Temperature

From before:

From Idea Gas Law:   PV=NkT (Recall k – Boltzmann Constant)
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(Note: Ktr in your book is the avg total
KE for all molecules in volume V.)

“Temperature is a direct measure of the average
translational KE of the molecules in an ideal gas.”
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Histogram and Distribution

We all are familiar with 

the concept of using a 

histogram to represent a 

collection of different 

test scores.



Distribution of Molecular Speeds

 Within an ideal gas, molecules 
moves with a diversity of 
speeds

 A mathematical rigorous way to 
describe this statistically is thru 
a distribution function f(v). 

 Properties:

 f(v) ~ 0, v ~ 0

 f(v) 0, v  large

 f(v) largest at mid-range

 f(v) fixed in time



 Diff averages with respect to the 
distribution of molecular speeds 
can be calculated using f(v):

1. (avg of v)

2. (avg of v2)

Maxwell-Boltzmann Distribution

 f(v)dv gives the probability of 
finding molecules with speed in 
range [v,v+dv].
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Example: Test Scores

Simple Avg:
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where  f(v)dv gives the fraction of 
molecules moving with speed  ,v v dv



Example: Test Scores

Simple Avg:
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 Most Probable Speed - the maximum value of the distribution 
function f(v):

Statistical Description of Molecular Speed

 Average speed (mean value):

 Root Mean Square (RMS) speed:

Note: vav does not equal vrms !
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In addition to simple “mean” and “median”, there are other 
ways to statistically describe the “average” values for a 
distribution of molecules moving at different speeds!

Ddrinking



Heat Capacities of Gases (at constant V)

Using the Kinetic-Molecular model, one can 
calculate heat capacity for an Ideal Gas!

 For point-like molecules (monoatomic gases), 
molecular energy consists only of translational 
kinetic energy Ktr

3 3( )
2 2trdK NkdT or nRdT 

 We just learned that Ktr is directly proportional 
to T.

 When an infinitesimal amount of heat dQ
enters the gas, dT increases, and dKtr increases 
accordingly,



Heat Capacities of Gases
 From definition of molar heat 

capacity, we also know:

vdQ nC dT

( 12.47 / )3
2v J mol KC R  

3
2vnC dT nRdT

 From mech-equivent of heat, 
requiring dQ=dKtr (no work) gives,

 Monatomic ~ Ideal Gas
(matches well with prediction)



Heat Capacity (diatomic)

A diatomic molecule can absorb energy into its translational 
motion, its rotational motion and in its vibrational motions.



Equipartition of Energy
This principle states that each degree of freedom (“separate 
mechanisms in storing energy”) will contribute (½ kT) to the total 
average energy per molecule. 

 Diatomic (without vibration): 3 trans dofs + 2 rotational dofs
This give Etot= 5/2 NkT or  = 5/2 nRT.
Again, consider an infinitesimal energy change, we have

,  and this gives  Cv = 5/2 R.5
2vnC dT nRdT

 Monoatomic: 3 translational dofs 3 (½ kT)
This give Etot= 3/2 NkT (same as before).



Heat Capacities (real gases, e.g., H2)

 At low T, only 3 
translational dofs can 
be activated

 At higher T, additional 
rotational dofs can be 
activated

 At higher T still, 
vibrational dofs might 
also get activated

Heat capacity for a H2 gas

 For normal T range, one take                 for H2 gas 
5

2vC R



Heat Capacities of Ideal Solids
 Atoms are connected 

together by springs
 Assume harmonic motions 

for these springs (Hooke’s 
law)

Cv = 3R

 For each spatial direction, 
there are two dofs
(vibrational KE, vibrational 
PE) and we have 3 dims

 For the entire solid, we 
have 3/2 kT (KE) + 3/2 kT (PE)  
 Etot = 3kT



Dulong Petit Prediction and Improvements

0vC 

Einstein: treating 
atoms as QM 
HMOs…

Debye: extension 
by including 
low-f phonons…

3
vC T



The van der Waals Equation
A more realistic Equation of States for gases which includes 
corrections for the facts that molecules are not point particles, 
that they have volume, and for the attraction/repulsion that 
naturally exists between the adjacent atoms/molecules.
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Notes on Van Der Waals

 The volume parameter b:
 It makes sense that real gas as finite size hard spheres will reduce the 

total volume of the gas by a term which is proportional to the number 
of mole n.
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Notes on Van Der Waals
 The intra-molecular force parameter a:
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 This intra-molecular force acts in pairs (to the lowest order of 
approximation)

 Intra-molecular force tends to reduce the pressure of the gas onto the 
wall by pulling the molecules toward the interior of the container

 For N molecules, # pairs = N(N-1)/2; for N large, ~ N2 

The count of molecular pairs (in mole) within an unit volume ~ (n/V)2

 depends on the number of pairs of molecules within this unit volume


