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Typical Usage for the Ideal Gas Law

0 For a fixed amount of gas (nR=const)

> PV:nR:const
T

0 So, 1f we have a gas at two different states 1(before) and 2
(after), their state variables are related simply by:

RV, _BY,
L T

We can use this relation to solve for any unknown variables
with the others being given.
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Example 18.2

In an automobile engine, a mixture of air/gasoline 1s
being compressed before 1gnition.

0 Typical compression ration 1 to 9
O Imtial P=1 atm and 7= 27 °C

note

Find the temperature of the compressed gas 1f we are
given the pressure after compression to be 21.7atm.

http://complex.gmu.edu/www-phys/phys262/soln/ex18.2.pdf
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The Ideal Gas Law (graphical view)

P, V, T relationship 1n the Ideal Gas Law can be visualize
graphically as a surface in 3D.
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PV Diagrams

0 2D projections of the
previous 3D surface.

0 Evolution of a gas at
constant T will move
along these curves
called isotherms.

p For each curve, pV 1s constant
and 1s directly proportional to T
(Boyle’s law).
Ty
I
|
0 V

Gives Pvs. Vatavarious 7: P = (nRT)%




Phases of Matter (reading phase diagrams)

P
-+ At T and p values above
d b) b s :
(. ) (= ) the critical point, the
. : : _ g material properties change
Materl'a] all : | Mat_?rl"f‘l all smoothly with changing p
solid E ol liquid or T, rather than undergoing
B s a phase change.
[ Q phiy
Pel o § N Critical
| el B < I
At the triple =-fsu...... & F ) | point
point, solid, Pal -___.,:- - _\-? o %{,@(’\q&o? ; 5 _____ (a)
liquid, and et" Nt <0 |
vapor coexist. , Qoﬁd y =l - 1' 1l
Pl e @QO‘) 7 Triple Material all )
’ su‘o\‘\.\ X 2 point vapor
‘50 ! I [
{ : I : T
0 T, T, L,

video

https://www.youtube.com/watch?v=ei8V5cWZebU



Critical Point and Liquid-Gas Coexistence

I'(K)

002
= 0%&
OcE

&
=
1

liquid

fluid




—!

Kinetic-Molecular Model of an Ideal Gas

Macroscopic description .+. » :. 1. Microscopic description
of gases - ] of gas molecules

PV T < = v,p, F,KE
Ideal Gas Law  Kinetic Theory Newton’s Eqs

0 An example of a successful theoretical linkage between the
“micro” and “macro” descriptions for an i1deal gas.

0 Explicit expressions of P & 7' in terms of microscopic
quantities!
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Kinetic Theory (assumptions)

0O A very large # N of identical molecules each with mass m 1n a container
with volume V'

0 Molecules behaves as point particles:
Molecule sizes << avg separate bet particles & dim of container

0 Molecules moves according to Newton’s laws and they move randomly
with equal probability in all directions and with a fixed distribution f(v)

(histogram) of speed v )

“Fraction of molecules
moving in a given range of
speeds stays the same™

speed (v)
0 Molecules interact only with the walls thru elastic collisions and the
container walls are perfectly rigid and infinitely massive

- both KE and momentum are conserved



Kinetic Theory (model)

A
v
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Idea Gas in a box with V=AL

Left Wall
before collision

V¢ .
V) after collision

—I—vx

e Velocity component parallel to the
wall (y-component) does not change.

* Velocity component perpendicular to the
wall (x-component) reverses direction.

» Speed v does not change.

Copyright © 2008 Pearsol LicH , publishing as Pearson Addison-Wasley.
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Pressure Exerted by an Ideal Gas

“Pressure on the left wall due to
molecular collisions”

. Momentum change in x-dir by a
molecule moving to the left at v.:

A(mv)= P —FP=my, —(-=mv_)=2mv_

. Duration, A¢, that this molecule
takes (on average) to collide with
the left wall again (diluted gas),

I
y

=D

At=

2L
v

X

Left Wall
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Pressure Exerted by an Ideal Gas

3. Force exerted by this molecule on the left wall:

_A(mv)  2mv_ my’

X

F _ _
At 2L/v. L

4. Wi1th N molecules, total force on wall in A¢:
F zﬁlF:ﬁ(V2 +Vo VY )
tot — i L 1x 2x Nx

m 1 & mN 2

- ZN(F;Vij =T(v§ )av Note: (vﬁ )av = (v, )av

- Fixed Invariant distribution implies ( « ) will be the same
when experiment 1s repeated.



Pressure of an Ideal Gas

5. Random direction (1sotropic) assumption:

(Vo™ (D= (Vay (x, y, z are the same)

Since V2 — H‘_;Hz — Vi T V)zz T sz , WEC have (Vz)aV: 3(Vx2)av

_ mN (vz)av
L 3

This gives, £,

6.  Finally, the pressure on the wall 1s:

b Fy _mN (O, _ 1Nm(O?),
A AL 3 3 V




—!

Pressure of an Ideal Gas

Rewriting, we have

(avg trans. KE per molecule)

2 1 2
PV ZENKEm(vz)an ZEN(KE)av

00 This tells us that P inside a container with a
fixed V-
1s proportional to the # of molecules N

1s proportional to the avg. translational KE of
molecules

(These are microscopic properties of the gas.)
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Molecular Interpretation of Temperature

From before: PVng(KEj (:sz
3 av 3 "

From Idea Gas Law: PV=NkT (Recall k£ — Boltzmann Constant)

For both of these to be true, we need to have: $¥(KE| =NkT

ay

(KE] :%kT (per molecule)

ay

K, = % NkT (all molecules in V) (Note: K, 1n your book 1s the avg total

KE for all molecules in volume V)

“Temperature 1s a direct measure of the average
translational KE of the molecules in an 1deal gas.”



Histogram and Distribution

We all are familiar with
the concept of using a
histogram to represent a
collection of different

test scores.

Count

10

Distribution of PHYS 262/266 Exam1 Scores

0 20 40 60 80 100

Combined Scores (in percentage)



Distribution of Molecular Speeds

0 Within an 1deal gas, molecules

moves with a diversity of Fraction of molecules
speeds fv) with speeds from v to v,
0 A mathematical rigorous way to
describe this statistically is thru L
a distribution function f{v). | : | | &
G A I /
0O Properties: O 01 U v / U
= Jv)~0v~0 Fraction of molecules
fv) 2 0, v > large with speeds greater than v 5

m
w  f(v) largest at mid-range
m

() fixed in time



Maxwell-Boltzmann Distribution

372
7(v)=4 7[( n j L2200 f(v)dv gives the probability of
27kT finding molecules with speed in

fv) LST,>T, range [v,v+dv].

0 Diff averages with respect to the
distribution of molecular speeds
can be calculated using f(v):

v 1. v, =va (v)dv  (avg of v)
0

As temperature increases:
* the curve flattens. , ® ,
» the maximum shifts to higher speeds. 2. ()a= _[V f(wydv (avg of v)
B — 0



Example: Test Scores

4 Test Scores: S, = {65,80,80,95} ,i=1--,4

N
Simple Avg: S, :%Zsi =%(65+80+80+95)
i=1

Histogram of _ l 2 l _ :
Test Scores SCZV o 4 (65) + 4 (80) + 4 (95) =80 weighted average
2/4 1 \ M
sl Sqy = Z 1.5, there f: gives the fraction of occurrence
of s

60 70 80 90 100

o0
V= I f (v)vdv where f(v)dv gives tf.le fraction of
0 molecules moving with speed [v,v+dv]



Example: Test Scores

4 Test Scores: 5, ={65,80,80,95},i=1,---,4

Simple Avg: (Sz)av =iisf = 5(652 +80° +80° +952)

i=1

(Sz)av :%(652)+%(802)+%(952) = 6512.5

(87) =200 £ (Sgy) =80°=6400

()= [ SN2y (v
0
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Statistical Description of Molecular Speed

0 Average speed (mean value): Yy =\ ohL
0 Root Mean Square (RMS) speed: vrmS:\/ (VzLV Z\/%WT

Note: v, does not equal v, !

In addition to simple “mean” and “median”, there are other
ways to statistically describe the “average” values for a
distribution of molecules moving at different speeds!

0 Most Probable Speed - the maximum value of the distribution

function f(v):
_ [2kT
Ymp =\"m
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Heat Capacities of Gases (at constant V)

(a)
Using the Kinetic-Molecular model, one can
l- calculate heat capacity for an Ideal Gas!

J

~9 0 For point-like molecules (monoatomic gases),
VA molecular energy consists only of translational
kinetic energy K.

o) - 0 We just learned that K, 1s directly proportional
l to 7.

0 When an infinitesimal amount of heat dQ
T | enters the gas, dT increases, and dK,, increases
a0 =yt O accordingly,

dK.,,. =§deT (or:%anT)




Heat Capacities of Gases

1 From definition of molar heat Table 18.1 Molar Heat Capacities
capacity, we also know: of Gases
Type of Gas Gas Cy(J/mol - K)
dQ =nCVdT Monatomic He 12.47
Ar 12.47

0 From mech-equivent of heat,

requiring do=dK,, (no work) gives, o™ e A
N, 20.76
nCvdT:%anT 0, 21.10
, CO 20.85
0 Monatomic ~ Ideal Gas

) .. Polyatomic CO 28.46

(matches well with prediction) ’ 2
S0, 31.39
:> CV:%R (=12.47J /mol-K) H,S 25.95



Heat Capacity (diatomic)

Translational motion. The molecule Rotational motion. The molecule rotat—~ _ . . . 7
moves as a whole; its velocity may be described about its center of mass. This molecule has . Vibrational m‘?“““- The molecule 05c1ll.ates
as the x-, y-, and z-velocity components of independent axes of rotation. as though the nuclei were connected by a spring.

its center of mass.

Independent y
axes of rotation |

We can treat each
atom’s mass as being
located at its nucleus. 8 i e

A diatomic molecule can absorb energy into its translational
motion, its rotational motion and 1n its vibrational motions.
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Equipartition of Energy

This principle states that each degree of freedom (“separate
mechanisms 1n storing energy’’) will contribute (2 £7) to the total
average energy per molecule.

0 Monoatomic: 3 translational dofs = 3 (Y2 kT)
This give E, = 3/2 NkT (same as before).

0 Diatomic (without vibration): 3 trans dofs + 2 rotational dofs
This give E, = 5/2 NkT or =5/2 nRT.
Again, consider an infinitesimal energy change, we have

nC dT =%anT, and this gives C,=5/2 R.



Heat Capacities (real gases, e.g., H,)

0 Atlow T . only 3 Heat capacity for a H, gas
translational dofs can c. Below SOK, H, Appreciable Appreciable
V' molecules undergo  rotational motion vibrational motion
< 4R | translation but do begins to occur  begins to occur
be aCtlvated not rotate or vibrate. above 50 K. above 600 K.
TRI2 - ~==| TRI2

0 Athigher 7, additional « v

rotational dofs can be  #2r 512
° 2R -
activated 1 -
0 At higher T still, R -
* * . R/2 +
vibrational dofs might I .
1 t t. t d 0 25 50 100 250 500 1000 2500 5000 10,000

- For normal 7 range, one take C, = éR for H, gas

2



Heat Capacities of Ideal Solids

1 Atoms are connected

together by springs
Assume harmonic motions

for these springs (Hooke’s
law)

For each spatial direction,
there are two dofs
(vibrational KE, vibrational

PE) and we have 3 dims

For the entire solid, we

have 3/2 kT (KE) + 3/2 kT (PE)
> E,, =3kT

—> C(C,=3R




Dulong Petit Prediction and Improvements

Cy
Einstein: treating R/ 2 [ Dulong and Petit prediction
atoms as QM Lead Aluminum
C >0 5R/2 |
v Diamond
2R
Debye: extension 3R]
by including |
low-f phonons... R
R/[2
Cv . T3 /
| | | | T (K)
2\ 400 600 800 1000
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The van der Waals Equation

A more realistic Equation of States for gases which includes
corrections for the facts that molecules are not point particles,
that they have volume, and for the attraction/repulsion that
naturally exists between the adjacent atoms/molecules.

(@) An idealized model of a gas (b) A more realistic model of a gas
.« Gas molecules are ‘,.-GHS molecules have
" | infinitely small. F Feo'| volume, WhFCh rc_duces
o Q 2 the volume in which
F Y they can move.
[ They exert forces | .. -z They exert attractive
on the walls of the K forces on each other,
‘_ container but not FEF which reduces the
. on each other. = pressure ...
b ... and they exert forces on the container’s walls.
an

P+V2 (V—bn)anT



1
Notes on Van Der Waals

0 The volume parameter b:

» It makes sense that real gas as finite size hard spheres will reduce the
total volume of the gas by a term which 1s proportional to the number
of mole n.

F ?F ‘
F: K nRT  nRT
(V' —bn)

eff

F\é*’:
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Notes on Van Der Waals

0 The intra-molecular force parameter a:

» Intra-molecular force tends to reduce the pressure of the gas onto the
wall by pulling the molecules toward the interior of the container

» This intra-molecular force acts in pairs (to the lowest order of
approximation)

—> depends on the number of pairs of molecules within this unit volume

= For N molecules, # pairs = N(N-1)/2; for N large, ~ N?
The count of molecular pairs (in mole) within an unit volume ~ (n/V)?

¥ PZ(VM—Qbea(g)Z
ot - (Pm(%jz](rf—nb):nm




