
Now we are ready to describe thermodynamic process 
such as the following:

Calorimetric Processes



Phase of water changes: During these periods, temperature stays 
constant as heat is added: Q mL 

Ice melts to 
liquid water 
at 0 C

Liquid water vaporizes 
to steam at 100 C

Ice warms Liquid water warms Steam warms

Temperature of water changes: During these periods, temperature rises 
as heat is added: Q mc T 



Calorimetry: Problem Solving with Heat 
Exchanges (method 1)

 Main Concept:  Conservation of Energy

S Q = 0 (sum of all heat flows into 
and out of system =0)

 Sign Convention:  heat enters a system is +

heat leaves a system is –

 T = Tf  – Ti



Calorimetry: Problem Solving with Heat 
Exchanges (method 2)

 Main Concept:  Conservation of Energy

 Keep all heats as positive quantities

OR       gain lossQ Q 



Calorimetry: Problem Solving with Heat 
Exchanges

Steps:

1. Identify all phase change pts

2. Apply (either Q=mcT or Q=mL) for each processes 

separately. (don’t apply Q=mcT across ph. changes!)

3. Use                    

 = 0    and follow sign convention
ALL

Q

or just do       gain lossQ Q 



Calorimetry (example 17.8) 

0.25kg 
Cola
Initially 
at 25oC

Ice initially at -20oC

Question: 

How much ice needed so that the 
final mixture is all liquid water 
with a temperature of 0oC?

note

http://complex.gmu.edu/www-phys/phys262/soln/ex17.8.pdf



Mechanisms of Heat Transfer
#1: Conduction

H CT TdQH kA
dt L

 

k thermal conductivity
(characteristic of the material)

H heat current [J/s]
(heat flow rate)

R = L/k  thermal resistance
(larger is better)

 /W m K

(+H is in the dir. 
of decreasing T)



Thermal Resistivity (additive R values)
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Now, by conservation of energy,  we need to have 1 2H H H 

Re-arranging and adding the two equations gives:
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So, for composite system, R is additive. 



Mechanisms of Heat Transfer

Protective tile for the space shuttle has both 
low values of k and c !



Mechanisms of Heat Transfer
#2: Convection

 Heating by moving large 
amounts of hot fluid, 
usually water or air.

 Heating element in the tip 
warms surrounding water.  
Heat is transferred by 
convection of the warm 
water movement.



Mechanisms of Heat Transfer
#3: Radiation
 Infrared lamps, hot objects, a 

fireplace, standing near a 
running furnace … these are all 
objects heating others by 
“broadcasting” EM radiation.

4H Ae T

e emissivity [0,1]
(effectiveness of surface in emitting 
EM radiation )

 Stefan-Boltzmann constant
(a fundamental physical constant)

(Stefan-Boltzmann Law)

Camera sensitive to these radiation 
can be used to take this picture.

A surface area of object at T



Mechanisms of Heat Transfer
 Radiation and Absorption
The environment around an object at a given T also 

radiates electromagnetic energy and the radiating 
object will absorb some of this energy.

In general, the absorption will again depends on the 
surface properties of the object, i.e., the same A, e, 
and .  Now, if the surrounding environment is at Ts, 
the net heat current radiated by the object will be,

4 4 4 4( )net s sH Ae T Ae T Ae T T     
(radiate) (absorb)
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Chapter 18: Thermal Properties of 
Matter

• Equations of State
• Ideal Gas Equation
• PV Diagrams
• Kinetic-Molecular Model of 

an Ideal Gas
• Heat Capacities
• Distribution of Molecular 

Speeds

Topics for Discussion



Equations of State
 State Variables

 physical variables describing the 
macroscopic state of the system: 

P, V, T, n (or m)

 Equation of State

 a mathematical relationship linking these 
variables



Ideal Gas – a Box of Dilute Gas
This discussion applies in general to all physical 
systems … now we focus on a system of dilute gas



The Ideal Gas Equation
 Properties of a gas is studied by 

varying the macroscopic variables: 
P, V, T, n and observing the result.

 Observations:

1. e.g. air pump1P V

2. e.g. hot air balloonV T

3. e.g. hot closed spray canP T

4. e.g. birthday balloonV n

applet

http://phet.colorado.edu/en/simulation/gas-properties



Ideal Gas Law (summary)
 By putting all these observations together, we have

R  Universal Gas Constant (R = 8.314 J/mol K)
(This is an important example of an Equation of State for a 
gas at thermal equilibrium.)

 An Ideal Gas (dilute): 
 No molecular interactions besides elastic collisions
 Molecular volume <<< volume of container

Most everyday gases ~ Ideal!

PV nRT



The Ideal Gas Law
Important Notes:

 The relationship P vs. T (at 
cont V) & V vs. T (at cont P) 
are linear for all diluted
gases.

 diluted gas ~ Ideal

 They both extrapolate to a 
single zero point (absolute 
zero).

 T has to be in K!
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The Ideal Gas Law (alternative form)

Instead of the number of moles (n), one can specify the 
amount of gas by the actual number of molecules (N).

N = n NA

where NA is the # of molecules in a mole of materials 
(Avogadro’s number).

23( 6.02214 10 / )
A

N molecules mole 

231.381 10 /
A

R
k J molecule K

N
   

A

NPV nRT PV RT NkT
N

   

where k is the Boltzmann constant,



Example 18.1 (V at STP)
What is the volume of a gas (one mole) at Standard 

Temperature and Pressure (STP)?

 STP: T = 0oC = 273.15K

P = 1 atm =

nRTPV nRT V
P

  

51.013 10 Pa

3(1 )(8.314 / )(273.15 ) 0.0224 22.4
51.013 10

mole J mol K K m L
Pa

  




Typical Usage for the Ideal Gas Law
 For a fixed amount of gas (nR=const)

PV
nR const

T
 

1 1 2 2

1 2

PV PV
T T



 So, if we have a gas at two different states 1(before) and 2 
(after), their state variables are related simply by:

We can use this relation to solve for any unknown variables 
with the others being given.


