
Statistical Mechanics Qualifying Exam

Spring 2024

January 10 (1:00 pm - 4:00 pm)

1. Non-interacting particles of mass m are kept in equilibrium at temperature T . The container which
holds the gas of these particles is tall enough that the e�ects of gravity cannot be neglected; the density
ρ(h) of the gas is not constant as a function of the height h. Determine the density ratio ρ(h1)/ρ(h2)
at any two di�erent heights h1, h2, using kinetic theory of gases:

(a) Let f(r,p) be the probability distribution function of the gas, such that f(r,p) d3r d3p is the
probability for a particle to be within the spatial volume d3r and momentum-space volume d3p sur-
rounding the point (r,p) in the phase space. Write the expression for f(r,p) in the canonical ensemble,
up to a normalization constant which you don't need to calculate. Take into account both the kinetic
and potential energy of the particles.

(b) Express the local density ρ(r) of the gas in terms of f(r,p). Using this, �nd the ratio ρ(h1)/ρ(h2).
[Note: the �nal result is very simple and easy to obtain without calculation, so in order to get full
credit you must explain and justify your steps.]

2. An elastic rubber band has a negligible thermal expansion coe�cient, and hence a �xed length L0 at
any temperature when no tension force is applied to it. It is experimentally found that the tension f
increases in proportion to the temperature increase if the band's length L is �xed, so that the internal
energy has the temperature dependence

E = nc(L)T

where n is the �xed number of molecules in the band and c(L) is a length-dependent proportionality
constant. Furthermore, the band obeys Hooke's law

f =
φ(T )

n
(L− L0)

i.e. the force of tension f at any �xed temperature T is proportional to the change of the band's length
L− L0.

(a) Write the 1st law of thermodynamics for this system, relating the in�nitesimal changes of in-
ternal energy E to the changes of entropy S and length L. Then, assuming L = const., express the
heat intake in the 1st law using E = ncT (and recall that c does not depend on temperature). Also,
substitute Hooke's law. At this point, derive the partial derivatives of the internal energy with respect
to temperature and length

dE

dT

∣∣∣∣
L

,
dE

dL

∣∣∣∣
T

in terms of c(L), φ(T ) and n,L, L0.

(b) Starting from the last result, derive the expressions for φ(T ) and c(L). Manipulate the energy
derivatives from part (a) in order to eliminate E and construct a relationship between dφ/dT and
dc/dL. Then integrate out the temperature to obtain φ(T ). The expression for φ(T ) you get must
not depend on L, so you can deduce the formula for c(L). Ultimately show that φ(T ) is proportional
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to temperature T . Verify your formulas for φ(T ) and c(L) by plugging them into the 1st law and
reproducing

E(L, T ) = nc(L)T

(c) Derive the expression for entropy change S(T )− S(T0) with the change of temperature from T0 to
T at constant L.

(d) Find the change of the band's length due to temperature increase, dL/dT , at a constant tension
force f . Is the result consistent with usual experience regarding thermal expansion? If yes, explain
what causes the usual experience. If not, explain which stated property of this system is unusual and
responsible for the unconventional behavior.

3. The three lowest energy levels of a certain molecule are E1 = 0, E2 = ε and E3 = 10ε. Show that
at su�ciently low temperatures T < Tc only levels E1 and E2 are populated. Estimate Tc for a gas
of N molecules by the condition that the number of molecules in the state E3 is N3(T = Tc) ∼ 1.
Find the average energy 〈E〉 of a molecule at temperature T . Find the speci�c heat C, identify its
low-temperature and high-temperature behaviors, then sketch C(T ).

4. Consider a quantum ideal gas of non-relativistic spin S = 1
2 fermions with mass m in two dimensions.

(a) Find the density of states ρ(ε) assuming the usual energy dispersion

ε =
π2~2

2mL2
(n2x + n2y) , nx, ny ∈ {1, 2, 3, . . .}

in a square box of side-length L. Show that ρ(ε) is constant, i.e. not dependent on energy in two
dimensions. [DOS is the number of single-particle quantum states per unit volume (area), per unit
energy interval].

(b) The particle concentration n is given by

n =

∞̂

0

dε ρ(ε)n(ε) , n(ε) =
1

z−1eβε + 1

where n(ε) is the fermionic �occupation number� (the average number of fermionic particles in a quan-
tum state with energy ε), and z = eβµ is fugacity determined by the chemical potential µ and inverse
temperature β = 1/kBT . Solve the given integral to �nd n(µ, T ). For simplicity, don't substitute the
detailed expression for ρ(ε) ≡ ρ = const. Then, obtain the exact formula for the chemical potential
µ(n, T ) as a function of concentration and temperature.

(c) Show that µ(T ) approaches a �nite value when T → 0, with a correction that vanishes as an
exponential function of temperature. This �nite value is the Fermi energy, µ(T = 0) = εF . What is
the temperature dependence of µ(T ) in the high-temperature limit?

(d) [OPTIONAL for extra credit] Derive the equation of state which relates the pressure p to the
particle concentration and temperature. First show that the pressure of non-relativistic particles in
two-dimensions is equivalent to energy per unit volume (area). Then, construct the integral formula for
energy density E = E/V analogous to the expression for n = N/V given in part (b). Try to simplify
the integral, but do not attempt to solve it (there is no closed form). Instead, obtain the low and
high temperature approximations. Show that pressure saturates to a constant (degeneracy pressure)
at T → 0, and obeys the classical equation of state in the high-temperature limit.
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