Qualifier

- 1. (25 points) A static magnetic field is applied to a spin-1/2 particle in the *z*-direction. The corresponding Hamiltonian is $H = \omega S_z$, where ω denotes the Larmor frequency.
- (a) (10 points) At time t = 0, the particle starts from the eigenstate of operator $\vec{S} \cdot \hat{n}$ with a positive eigenvalue, where the unit vector \hat{n} lies in the *x*-*z* plane with a polar angle θ . Find the matrix form of the state vector at time *t* in the S_z eigenbasis.
- (b) (5 points) If the system consists of a pure ensemble of spin-1/2 particles, starting from the initial same state as in (a), find the density matrix at time *t*.
- (c) (10 points) If the system is a mixed ensemble, 50% of the particle's population starts from the same initial state as in (a) and the rest starts from the eigenstate of $\vec{S} \cdot \hat{n}$ with the negative eigenvalue. What should be the density matrix at any given time?
- 2. (25 points) Let $|nlm\rangle$ represents the energy eigenstate for an isolated hydrogen atom, neglecting the electron spin. *n* is the principal quantum number, *l* and *m* denote the eigenket of the orbital angular momentum. For state $|\alpha\rangle = \frac{1}{3}(|210\rangle + \sqrt{3}|211\rangle + \sqrt{5}|21-1\rangle)$ answer the following questions.
- (a) (10 points) Calculate the expectation values $\langle L_x \rangle$, $\langle L_y \rangle$, and $\langle L_z \rangle$.
- (b) (10 points) Calculate the expectation values $\langle L_x^2 \rangle$, $\langle L_y^2 \rangle$, and $\langle L_z^2 \rangle$.
- (c) (5 points) Verify the uncertainty principle for all three components of orbital angular momentum.
- 3. (25 points) A one dimensional simple harmonic oscillator with an angular frequency ω is in a coherent state $|\lambda\rangle$ at time t = 0. Here $|\lambda\rangle$ is the eigenket of the annihilation operator, $a|\lambda\rangle = \lambda |\lambda\rangle$.
- (a) (10 points) Calculate the expectation value of position and momentum at time t.
- (b) (10 points) Calculate the uncertainty for position and momentum at time t.
- (c) (5 points) Prove the coherent state is a minimum uncertainty state.
- 4. (15 points) A system of two spin-1/2 particles is in a spin-singlet state, $|\alpha\rangle = \frac{1}{\sqrt{2}}(|+-\rangle |-+\rangle)$. Observer Alice can only make measurement on one of the particles. Observer Bob can only measure the

other.

- (a) (5 points) When Alice measures S_z , what are the possible values she should get if Bob does not measure his particle? What are the corresponding probabilities?
- (b) (5 points) What results should Alice get if Bob measures his particle at the same time and gets $-\frac{\hbar}{2}$?
- (c) (5 points) Assuming a source that can generate such particle-pairs one at a time, design a thought experiment so that the results break the Bell's inequality. List your measurements and corresponding results. Show that the Bell's inequality is violated by the results.