Qualifier Aug. 2015

name

You are allowed to bring one textbook of your choice.

Problem 1 (20points)

A large number N of spin ½ particles are prepared in the same eigenstate of the operator \hat{S}_x . This ensemble goes through a series of Stern-Gerlach-type of measurements as follows:

- 1) The first measurement lets $s_z = -\hbar/2$ particles pass, and blocks $s_z = \hbar/2$ particles.
- 2) The second measurement blocks $s_n = -\hbar/2$ and let $s_n = \hbar/2$ pass, where s_n is the

eigenvalue of the operator $\vec{S}\cdot\hat{n}\,$ and the unit vector $\hat{n}\,$ makes an angle $\, heta\,$ from the z-axis in the z-x plane.

3) The final step measures \hat{S}_x .

Calculate the number of particles (N_+) with $s_x = \hbar/2$ and (N_-) with $s_x = -\hbar/2$, respectively, in the final beam after the third step. In which quadrant should the θ value be to maximize N_+ ?

Problem 2 (30points)

An electron is subject to a uniform magnetic field along the z-axis. The Larmor frequency is ω . At t=0 the electron is in the eigenstate of $\vec{S} \cdot \hat{n}$ with $s_n = \hbar/2$, where the unit vector \hat{n} makes an angle θ from the z-axis in the z-x plane.

- (a) Calculate the expectation values of \hat{S}_x , \hat{S}_y , \hat{S}_z at time t.
- (b) Calculate the uncertainty of all three observables from the part (a).
- (c) Show an example that the uncertainty principle is satisfied at time t.

Problem 3 (20 points)

A system consists of two spin ½ particles localized at the same point in space. Let \vec{S}_1 and \vec{S}_2 be the individual spin operators of the two particles respectively. The spin-spin coupling Hamiltonian of this system is $H = S_{1x}S_{2x} + S_{1y}S_{2y} + S_{1z}S_{2z}$. Find the eigenstates and the corresponding eigenvalues of H in the following cases:

- (a) if the two particles are different (for example, an electron and a proton)
- (b) if the two particles are identical.

Problem 4 (30points)

The state |lpha
angle of a simple harmonic oscillator at t=0 is a superposition of two number states |n
angle and |l
angle, where n>l.

- (a) Construct |lpha
 angle so that the expectation value of position operator $\langle X
 angle$ is at its maximum for a given n .
- (b) Calculate the variance of the position operator, $\left< (X \left< X \right>)^2 \right>$ at time t.
- (c) Calculate the expectation value of the number operator $\,N\,$ at time t.