Qualifying Exam, Electrodynamics, Aug. 2016

1. [30 pts] A thin spherical shell of radius a is cut along the equator and the upper hemisphere is held at constant scalar potential V while the lower hemisphere is held at -V.

(a) Determine the scalar potential $\Phi(r,\theta)$ for r > a and r < a, where r is the radius measured from the center of the sphere and θ is the polar angle in spherical coordinates. You may express your answer in terms of constant $c_l = (2l+1) \int_0^1 P_l(x) dx$, e.g. $c_1 = 3/2$.

(b) Find the total charge and the electric dipole moment of the shell. Hint: you may consider the limit of $r \to \infty$.

2. [20 pts] A capacitor is made of two concentric conducting cylinders of radii a and c(c > a) and length $L \gg c$. Between the two cylinders, the region a < r < b is filled with a dielectric material with permittivity ϵ while the remaining volume b < r < c is empty. Suppose the line charge density is $\pm \lambda$ at the cylindrical surface r = a and r = c respectively.

(a) Find the capacitance (per unit length) of the system.

(b) Find the polarization charge per unit length at the surface of the dielectric, r = b.

3. [30 pts] Charge Q is uniformly distributed inside a sphere of radius R. The sphere rotates with constant angular velocity ω .

(a) Find the magnetic field **B** at the center of the sphere.

(b) Find the vector potential $\mathbf{A}(\mathbf{r})$ in the far field $r \gg R$.

4. [20 pts] A plane electromagnetic wave in vacuum has angular frequency ω . The electric field is polarized along the \hat{z} axis and its maximum amplitude is E_0 . At the origin and time t = 0, the electric field is measured to be $E_x = E_y = 0$, $E_z = E_0$, and the y component of the magnetic field is found to be zero, $B_y = 0$.

(a) Find $\mathbf{E}(\mathbf{r},t)$ and $\mathbf{B}(\mathbf{r},t)$ in terms of ω , c, and E_0 .

(b) The wave is incident normally on a perfectly absorbing flat screen. Find the radiation pressure (force per unit area) on the screen.