## Qualifying Exam, Electromagnetism, Jan. 2014

1. [30 pts] Charge q is evenly distributed on a ring of radius a. The ring is centered at the origin and lies within the xy plane. Assume a vacuum elsewhere.

(a) Show the potential  $\Phi$  along the z-axis is given by  $\Phi(z) = q/4\pi\epsilon_0\sqrt{z^2 + a^2}$ .

(b) Write down the form of  $\Phi(r, \theta, \phi)$  away from the ring as a series summation, for r > a and r < a respectively.

(c) Determine  $\Phi(r, \theta, \phi)$  for r > a from its z-axis value obtained in (a).

(d) Compute the electric dipole moment  $\mathbf{p}$  and quadrupole moment  $Q_{ij}$  of the charged ring, and use them to find  $\Phi(r,\theta,\phi)$  for  $r \gg a$  to the order of  $r^{-3}$ . (You may use the multipole moments  $q_{lm}$  instead of  $\mathbf{p}$  and  $Q_{ij}$ .)

2. [20 pts] An infinitely long and deep slot is formed by two grounded conductor plates at x = 0 and x = a, and a conductor plate at y = 0 is held at a potential V and insulated from the other plates.

(a) Write down the differential equation for the potential  $\Phi(x, y, z)$  inside the slot and its boundary conditions.

(b) Find the potential  $\Phi$  everywhere inside the slot.



3. [30 pts] Total charge Q is uniformly distributed on a spherical surface of radius R. The sphere is centered at the origin and spins around the z axis with angular velocity  $\omega$ . Assume magnetic permeability  $\mu_0$  everywhere.

(a) Show that away from the spherical surface, the magnetic field can be expressed as  $\mathbf{H} = -\nabla \Phi_M$ , with  $\nabla^2 \Phi_M = 0$ .

- (b) Find the surface current density **K** and the boundary conditions for the magnetic induction **B** at r = R.
- (c) Find  $\Phi_M$  inside and outside of the sphere.

(d) Find **B** inside the sphere.

4. [20 pts] A steady current I carried by a wire along the z axis flows from  $z = -\infty$  and abruptly terminates at the origin z = 0. The charge accumulated at the origin is Q(t) = It, where t is time.

a) Find the electric field  $\mathbf{E}(\mathbf{r},t)$  and the displacement current  $\partial_t \mathbf{D}$ . Explain your reasoning.

b) Discuss qualitatively how the magnetic field  $\mathbf{H}(\mathbf{r})$  for z > 0 can be determined from the Ampere-Maxwell law.