Classical Electrodynamics Qualifying Exam (3 hours) August 23, 2017 Open-book, closed-notes

- 1. [20 pts] A charged ring of radius *a* is placed in parallel to a grounded, infinitely large conducting plane. The distance between the charged ring and the conducting plane is *d*, and the line charge density on the ring is λ . Write the electrical potential $\Phi(\mathbf{r})$ anywhere in terms of Legendre polynomials.
- [20 pts] Two concentric conducting spheres of inner and outer radii *a* and *b*, respectively, carry charges ±Q. The empty space between the spheres is half-filled by a hemispherical shell of dielectric (of dielectric constant ε/ε₀), as shown in the figure.
 (a) Find the electric field everywhere between the spheres. (b) Calculate the polarization-charge density induced on the inner surface on the dielectric *r*=*a*.

- 3. [20 pts] Charge Q is uniformly distributed on a conduction sphere with radius R. The sphere is rotating around its z axis at an angular velocity ω . Suppose the magnetic permeability μ_0 is the same outside and inside the sphere. Solve for the magnetic induction $\mathbf{B}(r)$ using the known quantities Q, R, and ω for both r > R and r < R.
- 4. [20 pts] Suppose a magnetostatic field is produced by permanent magnetization $\mathbf{M}(\mathbf{r})$ of a local domain. (a) Show that a scalar potential $\phi(\mathbf{r})$ exists such that $\nabla^2 \phi(\mathbf{r}) = \nabla \cdot \mathbf{M}(\mathbf{r})$. (b) Prove $\int \mathbf{B}(\mathbf{r}) \mathbf{H}(\mathbf{r}) d\tau = 0$.
- 5. [20 pts] A thick conducting spherical shell is placed in a uniform electrical field \vec{E}_0 . The outer and inner radii of the shell are R_1 and R_2 , respectively. An electric dipole (with dipole moment \vec{p}) is placed at the center of the sphere. The angle between \vec{p} and \vec{E}_0 is α . Suppose the electrical potential of the sphere is V_0 . (1) Find the potential inside and outside the sphere; and (2) Calculate the energy and force of the dipole in the uniform field.

